Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 32(8): 1812-1821.e4, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35316652

RESUMO

Ingested nutrients are proposed to control mammalian behavior by modulating the activity of hypothalamic orexin/hypocretin neurons (HONs). Previous in vitro studies showed that nutrients ubiquitous in mammalian diets, such as non-essential amino acids (AAs) and glucose, modulate HONs in distinct ways. Glucose inhibits HONs, whereas non-essential (but not essential) AAs activate HONs. The latter effect is of particular interest because its purpose is unknown. Here, we show that ingestion of a dietary-relevant mix of non-essential AAs activates HONs and shifts behavior from eating to exploration. These effects persisted despite ablation of a key neural gut → brain communication pathway, the cholecystokinin-sensitive vagal afferents. The behavioral shift induced by the ingested non-essential AAs was recapitulated by targeted HON optostimulation and abolished in mice lacking HONs. Furthermore, lick microstructure analysis indicated that intragastric non-essential AAs and HON optostimulation each reduce the size, but not the frequency, of consumption bouts, thus implicating food palatability modulation as a mechanism for the eating suppression. Collectively, these results suggest that a key purpose of HON activation by ingested, non-essential AAs is to suppress eating and re-initiate food seeking. We propose and discuss possible evolutionary advantages of this, such as optimizing the limited stomach capacity for ingestion of essential nutrients.


Assuntos
Encéfalo , Hipotálamo , Aminoácidos/metabolismo , Animais , Encéfalo/fisiologia , Ingestão de Alimentos/fisiologia , Glucose/metabolismo , Hipotálamo/metabolismo , Mamíferos , Camundongos , Neurônios/fisiologia , Orexinas/metabolismo
2.
Curr Biol ; 26(18): 2486-2491, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27546579

RESUMO

In humans and rodents, loss of brain orexin/hypocretin (OH) neurons causes pathological sleepiness [1-4], whereas OH hyperactivity is associated with stress and anxiety [5-10]. OH cell control is thus of considerable interest. OH cells are activated by fasting [11, 12] and proposed to stimulate eating [13]. However, OH cells are also activated by diverse feeding-unrelated stressors [14-17] and stimulate locomotion and "fight-or-flight" responses [18-20]. Such OH-mediated behaviors presumably preclude concurrent eating, and loss of OH cells produces obesity, suggesting that OH cells facilitate net energy expenditure rather than energy intake [2, 21-23]. The relationship between OH cells and eating, therefore, remains unclear. Here we investigated this issue at the level of natural physiological activity of OH cells. First, we monitored eating-associated dynamics of OH cells using fiber photometry in free-feeding mice. OH cell activity decreased within milliseconds after eating onset, and remained in a down state during eating. This OH inactivation occurred with foods of diverse tastes and textures, as well as with calorie-free "food," in both fed and fasted mice, suggesting that it is driven by the act of eating itself. Second, we probed the implications of natural OH cell signals for eating and weight in a new conditional OH cell-knockout model. Complete OH cell inactivation in adult brain induced a hitherto unrecognized overeating phenotype and caused overweight that was preventable by mild dieting. These results support an inhibitory interplay between OH signals and eating, and demonstrate that OH cell activity is rapidly controllable, across nutritional states, by voluntary action.


Assuntos
Ingestão de Alimentos , Ingestão de Energia , Comportamento Alimentar , Neurônios/metabolismo , Orexinas/genética , Animais , Encéfalo/metabolismo , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Orexinas/metabolismo
3.
Eur J Neurosci ; 35(9): 1426-32, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22507526

RESUMO

Orexin/hypocretin (orx/hcrt) neurons are thought to ensure that reward-seeking is accompanied by alertness, but the underlying circuit organization is unclear. Reports of differential regulation of lateral versus medial orx/hcrt cells produced a hypothesis of 'efferent dichotomy', in which lateral orx/hcrt cells innervate the ventral tegmental area (VTA) and control reward, while medial orx/hcrt cells innervate locus coeruleus (LC) and control arousal. Two distinct types of orx/hcrt cells also emerged from analysis of intrinsic and input-driven single-cell electrical activity. To examine the projections of these emerging orx/hcrt subtypes to LC and VTA, we injected retrograde tracer into these regions in the mouse brain in vivo, and then examined the properties of tracer-containing orx/hcrt cells in hypothalamic slices. VTA- and LC-projecting orx/hcrt cells were found across the entire orx/hcrt field, including the zona incerta, perifornical area, dorsomedial/anterior and lateral hypothalamus. Within these areas, orx/hcrt cells had similar probabilities of projecting to VTA or LC. Examination of lateral versus medial sections revealed that VTA and LC received inputs from both lateral and medial orx/hcrt cells, but, unexpectedly, lateral orx/hcrt cells were more likely to project to LC than medial orx/hcrt cells. Finally, patch-clamp recordings revealed that VTA and LC received projections from both electrical classes of orx/hcrt cells, which had similar likelihoods of projecting to VTA or LC. Contrary to previous predictions, our data suggest that medial and lateral orx/hcrt cells, and the different electrical and morphological subclasses of orx/hcrt cells identified to date, send projections to both LC and VTA.


Assuntos
Mapeamento Encefálico , Potenciais Pós-Sinápticos Inibidores/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Locus Cerúleo/citologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Área Tegmentar Ventral/citologia , Animais , Contagem de Células , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipotálamo/citologia , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microesferas , Vias Neurais/fisiologia , Orexinas , Rodaminas
4.
Neuron ; 72(4): 616-29, 2011 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-22099463

RESUMO

Hypothalamic orexin/hypocretin (orx/hcrt) neurons regulate energy balance, wakefulness, and reward; their loss produces narcolepsy and weight gain. Glucose can lower the activity of orx/hcrt cells, but whether other dietary macronutrients have similar effects is unclear. We show that orx/hcrt cells are stimulated by nutritionally relevant mixtures of amino acids (AAs), both in brain slice patch-clamp experiments, and in c-Fos expression assays following central or peripheral administration of AAs to mice in vivo. Physiological mixtures of AAs electrically excited orx/hcrt cells through a dual mechanism involving inhibition of K(ATP) channels and activation of system-A amino acid transporters. Nonessential AAs were more potent in activating orx/hcrt cells than essential AAs. Moreover, the presence of physiological concentrations of AAs suppressed the glucose responses of orx/hcrt cells. These results suggest a new mechanism of hypothalamic integration of macronutrient signals and imply that orx/hcrt cells sense macronutrient balance, rather than net energy value, in extracellular fluid.


Assuntos
Proteínas Alimentares/farmacologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeos/biossíntese , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/farmacologia , Aminoácidos/metabolismo , Aminoácidos/fisiologia , Animais , Proteínas Alimentares/metabolismo , Hipotálamo/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Orexinas , Técnicas de Patch-Clamp
5.
J Physiol ; 589(Pt 23): 5701-8, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22005675

RESUMO

Central orexin/hypocretin neurons promote wakefulness, feeding and reward-seeking, and control blood glucose levels by regulating sympathetic outflow to the periphery. Glucose itself directly suppresses the electrical activity and cytosolic calcium levels of orexin cells. Recent in vitro studies suggested that glucose inhibition of orexin cells may be mechanistically unusual, because it persists under conditions where glucose metabolism is unlikely. To investigate this further, and to clarify whether background metabolic state regulates orexin cell glucosensing, here we analysed glucose responses of orexin cells in mouse brain slices, in the presence and absence of metabolic inhibitors and physiological energy substrates. Consistent with their documented insensitivity to glucokinase inhibitors, the glucose responses of orexin cells persisted in the presence of the mitochondrial poison oligomycin or the glial toxin fluoroacetate. Unexpectedly, in the presence of oligomycin, the magnitude of the glucose response was significantly enhanced. In turn, 2-deoxyglucose, a non-metabolizable glucose analogue, elicited larger responses than glucose. Conversely, intracellular pyruvate dose-dependently suppressed the glucose responses, an effect that was blocked by oligomycin. The glucose responses were also suppressed by intracellular lactate and ATP. Our new data suggest that other energy substrates not only fail to mimic the orexin glucose response, but paradoxically suppress it in a metabolism-dependent manner. We propose that this unexpected intrinsic property of orexin cells allows them to act as 'conditional glucosensors' that preferentially respond to glucose during reduced background energy levels.


Assuntos
Metabolismo Energético/fisiologia , Glucose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Fluoracetatos/farmacologia , Ácido Láctico/metabolismo , Camundongos , Camundongos Transgênicos , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Oligomicinas/farmacologia , Orexinas , Técnicas de Patch-Clamp , Ácido Pirúvico/metabolismo
6.
J Physiol ; 589(Pt 3): 639-51, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21135047

RESUMO

Hypothalamic hypocretin/orexin (hcrt/orx) neurons promote arousal and reward seeking, while reduction in their activity has been linked to narcolepsy, obesity and depression. However, the mechanisms influencing the activity of hcrt/orx networks in situ are not fully understood. Here we show that glycine, a neurotransmitter best known for its actions in the brainstem and spinal cord, elicits dose dependent postsynaptic Cl⁻ currents in hcrt/orx cells in acute mouse brain slices. The effect was blocked by the glycine receptor (GLyR) antagonist strychnine and mimicked by the GlyR agonist alanine. Postsynaptic GlyRs on hcrt/orx cells remained functional during both early postnatal and adult periods, and gramicidin-perforated patch-clamp recordings revealed that they progressively switch from excitatory to inhibitory during the first two postnatal weeks. The pharmacological profile of the glycine response suggested that developed hcrt/orx neurons contain α/ß-heteromeric GlyRs that lack α2-subunits, whereas α2-subunits, whereas α2-subunits are present in early postnatal hcrt/orx neurons. All postsynaptic currents (PSCs) in developed hcrt/orx cells were blocked by inhibitors of GABA and glutamate receptors, with no evidence of GlyR-mediated PSCs. However, the frequency but not amplitude of miniature PSCs was reduced by strychnine and increased by glycine in ~50% of hcrt/orx neurons. Together, these results provide the first evidence for functional GlyRs in identified hcrt/orx circuits and suggest that the activity of developed hcrt/orx cells is regulated by two GlyR pools: inhibitory extrasynaptic GlyRs located on all hcrt/orx cells and excitatory GlyRs located on presynaptic terminals contacting some hcrt/orx cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Receptores de Glicina/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Envelhecimento/fisiologia , Alanina/farmacologia , Animais , Animais Recém-Nascidos , Benzotiadiazinas/farmacologia , Canais de Cloreto/fisiologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/metabolismo , Glicina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Orexinas , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Piridazinas/farmacologia , Receptores de GABA/fisiologia , Receptores de Glutamato/fisiologia , Receptores de Glicina/antagonistas & inibidores , Estricnina/farmacologia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/fisiologia , Ácido gama-Aminobutírico/metabolismo
7.
Eur J Neurosci ; 30(1): 57-64, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19508695

RESUMO

The firing of hypothalamic hypocretin/orexin neurons is vital for normal sleep-wake transitions, but its molecular determinants are not well understood. It was recently proposed that TASK (TWIK-related acid-sensitive potassium) channels [TASK1 (K(2P)3.1) and/or TASK3 (K(2P)9.1)] regulate neuronal firing and may contribute to the specialized responses of orexin neurons to glucose and pH. Here we tested these theories by performing patch-clamp recordings from orexin neurons directly identified by targeted green fluorescent protein labelling in brain slices from TASK1/3 double-knockout mice. The deletion of TASK1/3 channels significantly reduced the ability of orexin cells to generate high-frequency firing. Consistent with reduced excitability, individual action potentials from knockout cells had lower rates of rise, higher thresholds and more depolarized after-hyperpolarizations. However, orexin neurons from TASK1/3 knockout mice retained typical responses to glucose and pH, and the knockout animals showed normal food-anticipatory locomotor activity. Our results support a novel role for TASK genes in enhancing neuronal excitability and promoting high-frequency firing, but suggest that TASK1/3 subunits are not essential for orexin cell responses to glucose and pH.


Assuntos
Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio/metabolismo , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Encéfalo/fisiologia , Comportamento Alimentar/fisiologia , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Orexinas , Técnicas de Patch-Clamp , Canais de Potássio/genética , Canais de Potássio de Domínios Poros em Tandem/genética
8.
Immunity ; 30(3): 348-57, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19303388

RESUMO

Environmental factors account for 75% of the risk of developing multiple sclerosis (MS). Numerous infections have been suspected as environmental disease triggers, but none of them has consistently been incriminated, and it is unclear how so many different infections may play a role. We show that a microbial peptide, common to several major classes of bacteria, can induce MS-like disease in humanized mice by crossreacting with a T cell receptor (TCR) that also recognizes a peptide from myelin basic protein, a candidate MS autoantigen. Structural analysis demonstrates this crossreactivity is due to structural mimicry of a binding hotspot shared by self and microbial antigens, rather than to degenerate TCR recognition. Biophysical studies reveal that the autoreactive TCR binding affinity is markedly lower for the microbial (mimicry) peptide than for the autoantigenic peptide. Thus, these data suggest a possible explanation for the difficulty in incriminating individual infections in the development of MS.


Assuntos
Doenças Autoimunes/imunologia , Proteínas de Bactérias/imunologia , Mimetismo Molecular/imunologia , Peptídeos/imunologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Cerebelo/patologia , Reações Cruzadas/imunologia , Drosophila , Escherichia coli/imunologia , Antígenos HLA-D/metabolismo , Antígeno HLA-DR2/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Esclerose Múltipla/imunologia , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Medula Espinal/patologia , Linfócitos T/fisiologia
9.
Nat Med ; 14(11): 1227-35, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18953350

RESUMO

The major known genetic risk factors in multiple sclerosis reside in the major histocompatibility complex (MHC) region. Although there is strong evidence implicating MHC class II alleles and CD4(+) T cells in multiple sclerosis pathogenesis, possible contributions from MHC class I genes and CD8(+) T cells are controversial. We have generated humanized mice expressing the multiple sclerosis-associated MHC class I alleles HLA-A(*)0301 (encoding human leukocyte antigen-A3 (HLA-A3)) and HLA-A(*)0201 (encoding HLA-A2) and a myelin-specific autoreactive T cell receptor (TCR) derived from a CD8(+) T cell clone from an individual with multiple sclerosis to study mechanisms of disease susceptibility. We demonstrate roles for HLA-A3-restricted CD8(+) T cells in induction of multiple sclerosis-like disease and for CD4(+) T cells in its progression, and we also define a possible mechanism for HLA-A(*)0201-mediated protection. To our knowledge, these data provide the first direct evidence incriminating MHC class I genes and CD8(+) T cells in the pathogenesis of human multiple sclerosis and reveal a network of MHC interactions that shape the risk of multiple sclerosis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Esclerose Múltipla/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Sistema Nervoso Central/imunologia , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Timo/imunologia
10.
Proc Natl Acad Sci U S A ; 105(33): 11975-80, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18695235

RESUMO

Brain glucose sensing is critical for healthy energy balance, but how appropriate neurocircuits encode both small changes and large background values of glucose levels is unknown. Here, we report several features of hypothalamic orexin neurons, cells essential for normal wakefulness and feeding: (i) A distinct group of orexin neurons exhibits only transient inhibitory responses to sustained rises in sugar levels; (ii) this sensing strategy involves time-dependent recovery from inhibition via adaptive closure of leak-like K(+) channels; (iii) combining transient and sustained glucosensing allows orexin cell firing to maintain sensitivity to small fluctuations in glucose levels while simultaneously encoding a large range of baseline glucose concentrations. These data provide insights into how vital behavioral orchestrators sense key features of the internal environment while sustaining a basic activity tone required for the stability of consciousness.


Assuntos
Adaptação Biológica , Regulação do Apetite/fisiologia , Glucose/metabolismo , Hipotálamo/metabolismo , Animais , Eletrofisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Orexinas
11.
Diabetes ; 57(10): 2569-76, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18591392

RESUMO

OBJECTIVE: Glucose sensing by specialized neurons of the hypothalamus is vital for normal energy balance. In many glucose-activated neurons, glucose metabolism is considered a critical step in glucose sensing, but whether glucose-inhibited neurons follow the same strategy is unclear. Orexin/hypocretin neurons of the lateral hypothalamus are widely projecting glucose-inhibited cells essential for normal cognitive arousal and feeding behavior. Here, we used different sugars, energy metabolites, and pharmacological tools to explore the glucose-sensing strategy of orexin cells. RESEARCH DESIGN AND METHODS: We carried out patch-clamp recordings of the electrical activity of individual orexin neurons unambiguously identified by transgenic expression of green fluorescent protein in mouse brain slices. RESULTS- We show that 1) 2-deoxyglucose, a nonmetabolizable glucose analog, mimics the effects of glucose; 2) increasing intracellular energy fuel production with lactate does not reproduce glucose responses; 3) orexin cell glucose sensing is unaffected by glucokinase inhibitors alloxan, d-glucosamine, and N-acetyl-d-glucosamine; and 4) orexin glucosensors detect mannose, d-glucose, and 2-deoxyglucose but not galactose, l-glucose, alpha-methyl-d-glucoside, or fructose. CONCLUSIONS: Our new data suggest that behaviorally critical neurocircuits of the lateral hypothalamus contain glucose detectors that exhibit novel sugar selectivity and can operate independently of glucose metabolism.


Assuntos
Carboidratos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Acetilglucosamina/farmacologia , Aloxano/farmacologia , Animais , Desoxiglucose/farmacologia , Metabolismo Energético/efeitos dos fármacos , Frutose/farmacologia , Galactose/farmacologia , Glucosamina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Ácido Láctico/farmacologia , Manose/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Metilglucosídeos/farmacologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Orexinas , Técnicas de Patch-Clamp , Tolbutamida/farmacologia
12.
Proc Natl Acad Sci U S A ; 104(25): 10685-90, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17563364

RESUMO

Hypothalamic orexin/hypocretin neurons recently emerged as key orchestrators of brain states and adaptive behaviors. They are critical for normal stimulation of wakefulness and breathing: Orexin loss causes narcolepsy and compromises vital ventilatory adaptations. However, it is unclear how orexin neurons generate appropriate adjustments in their activity during changes in physiological circumstances. Extracellular levels of acid and CO2 are fundamental physicochemical signals controlling wakefulness and breathing, but their effects on the firing of orexin neurons are unknown. Here we show that the spontaneous firing rate of identified orexin neurons is profoundly affected by physiological fluctuations in ambient levels of H+ and CO2. These responses resemble those of known chemosensory neurons both qualitatively (acidification is excitatory, alkalinization is inhibitory) and quantitatively (approximately 100% change in firing rate per 0.1 unit change in pHe). Evoked firing of orexin cells is similarly modified by physiologically relevant changes in pHe: Acidification increases intrinsic excitability, whereas alkalinization depresses it. The effects of pHe involve acid-induced closure of leak-like K+ channels in the orexin cell membrane. These results suggest a new mechanism of how orexin/hypocretin networks generate homeostatically appropriate firing patterns.


Assuntos
Ácidos/farmacologia , Dióxido de Carbono/farmacologia , Hipotálamo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Orexinas , Técnicas de Patch-Clamp
13.
Curr Opin Immunol ; 18(6): 704-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17008081

RESUMO

Murine models for human autoimmune diseases are an essential tool for studying pathogenesis and for identifying new therapeutic targets. Mice are not the natural disease host, and conventional models have proved to be poor predictors of efficacy and safety in recent trials aiming to translate drug and biologic treatments to humans. Evidently, further steps towards recapitulating human diseases are urgently needed, for example using transgenic predisposing human HLA allele(s) plus T-cell receptor(s) implicated in a representative patient's autoimmune disease. The latest development - humanizing most of the immune system by transplanting human hematopoietic stem cells into severely immunodeficient mice - should lead to even better modeling.


Assuntos
Doenças Autoimunes , Modelos Animais de Doenças , Camundongos Transgênicos/imunologia , Camundongos , Animais , Transplante de Células-Tronco Hematopoéticas , Humanos
14.
Neuron ; 50(5): 711-22, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16731510

RESUMO

Glucose-inhibited neurons orchestrate behavior and metabolism according to body energy levels, but how glucose inhibits these cells is unknown. We studied glucose inhibition of orexin/hypocretin neurons, which promote wakefulness (their loss causes narcolepsy) and also regulate metabolism and reward. Here we demonstrate that their inhibition by glucose is mediated by ion channels not previously implicated in central or peripheral glucose sensing: tandem-pore K(+) (K(2P)) channels. Importantly, we show that this electrical mechanism is sufficiently sensitive to encode variations in glucose levels reflecting those occurring physiologically between normal meals. Moreover, we provide evidence that glucose acts at an extracellular site on orexin neurons, and this information is transmitted to the channels by an intracellular intermediary that is not ATP, Ca(2+), or glucose itself. These results reveal an unexpected energy-sensing pathway in neurons that regulate states of consciousness and energy balance.


Assuntos
Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio/metabolismo , Ácidos/farmacologia , Anestésicos Inalatórios/farmacologia , Animais , Metabolismo Energético/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Expressão Gênica , Glucose/farmacologia , Proteínas de Fluorescência Verde/genética , Halotano/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Orexinas , Técnicas de Patch-Clamp , Canais de Potássio/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...