Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychol Med ; 52(6): 1101-1114, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-32779562

RESUMO

BACKGROUND: Many cognitive functions are under strong genetic control and twin studies have demonstrated genetic overlap between some aspects of cognition and schizophrenia. How the genetic relationship between specific cognitive functions and schizophrenia is influenced by IQ is currently unknown. METHODS: We applied selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) to examine the heritability of specific cognitive functions and associations with schizophrenia liability. Verbal and performance IQ were estimated using The Wechsler Adult Intelligence Scale-III and the Danish Adult Reading Test. In total, 214 twins including monozygotic (MZ = 32) and dizygotic (DZ = 22) pairs concordant or discordant for a schizophrenia spectrum disorder, and healthy control pairs (MZ = 29, DZ = 20) were recruited through the Danish national registers. Additionally, eight twins from affected pairs participated without their sibling. RESULTS: Significant heritability was observed for planning/spatial span (h2 = 25%), self-ordered spatial working memory (h2 = 64%), sustained attention (h2 = 56%), and movement time (h2 = 47%), whereas only unique environmental factors contributed to set-shifting, reflection impulsivity, and thinking time. Schizophrenia liability was associated with planning/spatial span (rph = -0.34), self-ordered spatial working memory (rph = -0.24), sustained attention (rph = -0.23), and set-shifting (rph = -0.21). The association with planning/spatial span was not driven by either performance or verbal IQ. The remaining associations were shared with performance, but not verbal IQ. CONCLUSIONS: This study provides further evidence that some cognitive functions are heritable and associated with schizophrenia, suggesting a partially shared genetic etiology. These functions may constitute endophenotypes for the disorder and provide a basis to explore genes common to cognition and schizophrenia.


Assuntos
Esquizofrenia , Adulto , Humanos , Esquizofrenia/genética , Gêmeos Monozigóticos/psicologia , Gêmeos Dizigóticos/genética , Cognição , Testes Neuropsicológicos
2.
Cortex ; 139: 282-297, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33933719

RESUMO

BACKGROUND: Cognitive functions have been associated with white matter (WM) microstructure in schizophrenia, but most studies are limited by examining only select cognitive measures and single WM tracts in chronic, medicated patients. It is unclear if the cognition-WM relationship differs between antipsychotic-naïve patients with schizophrenia and healthy controls, as differential associations have not been directly examined. Here we examine if there are differential patterns of associations between cognition and WM microstructure in first-episode antipsychotic-naïve patients with schizophrenia and healthy controls, and we characterize reliable contributors to the pattern of associations across multiple cognitive domains and WM regions, in order to elucidate white matter contribution to the neural underpinnings of cognitive deficits. METHODS: Thirty-six first-episode antipsychotic-naïve patients with schizophrenia and 52 matched healthy controls underwent cognitive tests and diffusion-weighted imaging on a 3T Magnetic Resonance Imaging scanner. Using a multivariate partial least squares correlation analysis, we included 14 cognitive variables and mean fractional anisotropy values of 48 WM regions. RESULTS: Initial analyses showed significant group differences in both measures of WM and cognition. There was no group interaction effect in the pattern of associations between cognition and WM microstructure. The combined analysis of patients and controls lead to a significant pattern of associations (omnibus test p = .015). Thirty-four regions and seven cognitive functions contributed reliably to the associations. CONCLUSIONS: The lack of an interaction effect suggests similar associations in first-episode antipsychotic-naïve patients with schizophrenia and healthy controls. This, together with the differences in both WM and cognitive measurements, supports the involvement of WM in cognitive deficits in schizophrenia. Our findings add to the field by showing a coherent picture of the overall pattern of association between cognition and WM. These findings increase our understanding of the impact of WM on cognition, contributing to the search for neuromarkers of cognitive deficits in schizophrenia.


Assuntos
Antipsicóticos , Esquizofrenia , Substância Branca , Antipsicóticos/uso terapêutico , Encéfalo/diagnóstico por imagem , Cognição , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Substância Branca/diagnóstico por imagem
3.
Schizophr Bull ; 45(6): 1231-1241, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30776063

RESUMO

Whether aberrant cerebral blood flow (CBF) in schizophrenia is affected by genetic influences, and consequently a potential marker for genetic susceptibility, is unknown. Our aims were to determine the heritability of CBF in thalamic, frontal, and striatal areas, and to ascertain if associations with disease were under genetic influence. Monozygotic (MZ) twin pairs concordant (n = 2) or discordant (n = 20) for schizophrenia spectrum disorders (ICD-10 F2x.x), matched on sex and age with dizygotic (DZ; n = 20) and healthy control pairs (MZ: n = 27; DZ: n = 18; total: n = 181 individuals), were recruited via the National Danish Twin Register. CBF in thalamus, frontal lobes, and putamen was measured with pseudo-continuous arterial spin labeling on a 3 T magnetic resonance scanner. Twin statistics were performed with structural equation modeling. CBF in the frontal lobes was heritable (h2 = 0.44, 95% CI [0.22-0.60]) but not correlated to disease. CBF correlated to schizophrenia spectrum disorders in the left thalamus (r = 0.17, [0.03-0.31]; P = 0.02), as well as in the left putamen (r = 0.19, [0.05-0.32]; P = 0.007) and the right putamen (r = 0.18, [0.03-0.32]; P = 0.02). When restricting the sample to schizophrenia (F20.x) only, shared genetic influences between CBF in the left putamen and schizophrenia liability (phenotypic correlation = 0.44, [0.28-0.58], P < 0.001) were found. Our results provide heritability estimates of CBF in the frontal lobes, and we find CBF in thalamus and putamen to be altered in schizophrenia spectrum disorders. Furthermore, shared genetic factors influence schizophrenia liability and striatal perfusion. Specifically, higher perfusion in the left putamen may constitute a marker of genetic susceptibility for schizophrenia.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/genética , Esquizofrenia/genética , Gêmeos Dizigóticos , Gêmeos Monozigóticos , Adulto , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Circulação Cerebrovascular/fisiologia , Dinamarca , Feminino , Lobo Frontal/irrigação sanguínea , Lobo Frontal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neostriado/irrigação sanguínea , Neostriado/diagnóstico por imagem , Putamen/irrigação sanguínea , Putamen/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Tálamo/irrigação sanguínea , Tálamo/diagnóstico por imagem
4.
Psychol Med ; 49(5): 868-875, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29914589

RESUMO

BACKGROUND: Cognitive deficits are already present in early stages of schizophrenia. P3a and P3b event-related potentials (ERPs) are believed to underlie the processes of attention and working memory (WM), yet limited research has been performed on the associations between these parameters. Therefore, we explored possible associations between P3a/b amplitudes and cognition in a large cohort of antipsychotic-naïve, first-episode schizophrenia (AN-FES) patients and healthy controls (HC). METHODS: Seventy-three AN-FES patients and 93 age- and gender-matched HC were assessed for their P3a/b amplitude with an auditory oddball paradigm. In addition, subjects performed several subtests from the Cambridge Neuropsychological Test Automated Battery (CANTAB). RESULTS: AN-FES patients had significantly reduced P3a/b amplitudes, as well as significantly lower scores on all cognitive tests compared with HC. Total group correlations revealed positive associations between P3b amplitude and WM and sustained attention and negative associations with all reaction time measures. These associations appeared mainly driven by AN-FES patients, where we found a similar pattern. No significant associations were found between P3b amplitude and cognitive measures in our HC. P3a amplitude did not correlate significantly with any cognitive measures in either group, nor when combined. CONCLUSIONS: Our results provide further evidence for P3a/b amplitude deficits and cognitive deficits in AN-FES patients, which are neither due to antipsychotics nor to disease progress. Furthermore, our data showed significant, yet weak associations between P3b and cognition. Therefore, our data do not supply evidence for deficient P3a/b amplitudes as direct underlying factors for cognitive deficits in schizophrenia.


Assuntos
Atenção , Transtornos Cognitivos/fisiopatologia , Cognição , Potenciais Evocados P300 , Esquizofrenia/fisiopatologia , Adulto , Estudos de Casos e Controles , Eletroencefalografia , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Tempo de Reação , Psicologia do Esquizofrênico , Adulto Jovem
5.
Schizophr Res Cogn ; 15: 1-6, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30302317

RESUMO

Age has been shown to have an impact on both grey (GM) and white matter (WM) volume, with a steeper slope of age-related decline in schizophrenia compared to healthy controls. In schizophrenia, the relation between age and brain volume is further complicated by factors such as lower intelligence, antipsychotic medication, and cannabis use, all of which have been shown to have independent effects on brain volume. In a study of first-episode, antipsychotic-naïve schizophrenia patients (N = 54) and healthy controls (N = 56), we examined the effects of age on whole brain measures of GM and WM volume, and whether these relationships were moderated by schizophrenia and intelligence (IQ). Secondarily, we examined lifetime cannabis use as a moderator of the relationship between age and brain volume. Schizophrenia patients had lower GM volumes than healthy controls but did not differ on WM volume. We found an age effect on GM indicating that increasing age was associated with lower GM volumes, which did not differ between groups. IQ did not have a direct effect on GM, but showed a trend-level interaction with age, suggesting a greater impact of age with lower IQ. There were no age effects on WM volume, but a direct effect of IQ, with higher IQ showing an association with larger WM volume. Lifetime cannabis use did not alter these findings significantly. This study points to effects of schizophrenia on GM early in the illness, before antipsychotic treatment is initiated, suggesting that WM changes may occur later in the disease process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...