Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(10): 2713-2716, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748143

RESUMO

This Letter introduces a novel, to the best of our knowledge, method for achieving mode-locking and synchronization of mode-locked output pulses from two lasers. The proposed technique leverages parametric gain from difference frequency generation. Specifically, a Nd:YAG laser is mode-locked by single-pass mode-locked pulses from a mode-locked Ti:sapphire laser using an intracavity nonlinear crystal. When the continuous-wave laser is not actively pumped, the system functions as a synchronously pumped optical parametric oscillator. This novel approach has the potential to enable new devices, especially for pump-probe applications or for generation of mode-locked pulses in spectral regions where conventional mode-locked devices are typically not available.

2.
Opt Lett ; 49(2): 407-410, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194580

RESUMO

In this Letter, a novel approach for unidirectional operation of a 1064 nm solid-state ring laser is demonstrated based on difference frequency mixing. Unidirectional operation is achieved exploiting the directional parametric gain from a single-pass diode laser, facilitated through a periodically poled LiNbO3 crystal. In addition to achieving unidirectional operation, the nonlinear process further enables the generation of single-frequency mid-infrared light. Using a single-pass tapered diode laser, tunable in the range from 780 to 815 nm, the generated mid-infrared signal covers the 2.9 to 3.5 µm range while optimizing the phase-match condition of the difference frequency generation process.

3.
Space Sci Rev ; 217(2): 29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33678912

RESUMO

The NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm ( 25.5 ∘ × 19.1 ∘ FOV ) to 110 mm ( 6.2 ∘ × 4.2 ∘ FOV ) and will acquire data at pixel scales of 148-540 µm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover's mast with a stereo baseline of 24.3 ± 0.1  cm and a toe-in angle of 1.17 ± 0.03 ∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with 1600 × 1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors' Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26 t h and May 9 t h , 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be < 10 % . Image quality, measured via the amplitude of the Modulation Transfer Function (MTF) at Nyquist sampling (0.35 line pairs per pixel), shows MTF Nyquist = 0.26 - 0.50 across all zoom, focus, and filter positions, exceeding the > 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11214-021-00795-x.

4.
Opt Express ; 27(2): 928-937, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696171

RESUMO

We report on a coherent beam combination of three high-brightness tapered amplifiers, which are seeded by a single-frequency laser at λ = 976 nm in a simple architecture with efficiently cooled emitters. The maximal combined power of 12.9 W is achieved at a combining efficiency of > 65%, which is limited by the amplifiers' intrinsic beam quality. The coherent combination cleans up the spatial profile, as the central lobe's power content increases by up to 86%. This high-brightness infrared beam is converted into the visible by second harmonic generation. This results in a high non-linear conversion efficiency of 4.5%/W and a maximum power over 2 W at 488 nm, which is limited by thermal effects in the periodically poled lithium niobate (PPLN).

5.
Appl Opt ; 55(32): 9270-9274, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27857320

RESUMO

Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40 µs.

6.
Opt Express ; 23(12): 15921-34, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193569

RESUMO

Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept for efficient power scaling of single-pass SHG beyond such limits using a cascade of nonlinear crystals, in which the first crystal is chosen for high nonlinear efficiency and the subsequent crystal(s) are chosen for power handling ability. Using this highly efficient single-pass concept, we generate 3.7 W of continuous-wave diffraction-limited (M(2)=1.25) light at 532 nm from 9.5 W of non-diffraction-limited (M(2)=7.7) light from a tapered laser diode, while avoiding significant thermal effects. Besides constituting the highest SH power yet achieved using a laser diode, this demonstrates that the concept successfully combines the high efficiency of the first stage with the good power handling properties of the subsequent stages. The concept is generally applicable and can be expanded with more stages to obtain even higher efficiency, and extends also to other combinations of nonlinear media suitable for other wavelengths.

7.
Opt Lett ; 38(21): 4312-5, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24177081

RESUMO

We demonstrate an optical coherence tomography device that simultaneously combines different novel ultrabroad bandwidth light sources centered in the 800 and 1060 nm regions, operating at 66 kHz depth scan rate, and a confocal laser scanning ophthalmoscope-based eye tracker to permit motion-artifact-free, ultrahigh resolution and high contrast retinal and choroidal imaging. The two wavelengths of the device provide the complementary information needed for diagnosis of subtle retinal changes, while also increasing visibility of deeper-lying layers to image pathologies that include opaque media in the anterior eye segment or eyes with increased choroidal thickness.


Assuntos
Corioide/fisiologia , Movimentos Oculares , Retina/fisiologia , Tomografia de Coerência Óptica/métodos , Humanos , Processamento de Imagem Assistida por Computador , Fatores de Tempo
8.
Acta Neurol Scand ; 55(6): 465-82, 1977 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-878837

RESUMO

Two male patients with severe reversible muscle weakness and excessive potassium deficiency associated with alkalosis during treatment with diuretics are presented. The case reports are further illustrated by the morphologic changes as seen in light and electron microscopic examination of muscle biopsies. Hypokalemia and muscle dysfunction are discussed in relation to other investigations of altered potassium metabolism and myopathy during treatment with certain diuretics.


Assuntos
Clortalidona/efeitos adversos , Clopamida/efeitos adversos , Hipopotassemia/induzido quimicamente , Doenças Musculares/induzido quimicamente , Clortalidona/uso terapêutico , Clopamida/uso terapêutico , Humanos , Hipopotassemia/patologia , Masculino , Pessoa de Meia-Idade , Músculos/patologia , Músculos/ultraestrutura , Doenças Musculares/patologia , Miofibrilas/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...