Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Pathol J ; 40(3): 322-328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835303

RESUMO

Soybean (Glycine max), a crucial global crop, experiences yearly yield reduction due to diseases such as anthracnose (Colletotrichum truncatum) and root rot (Fusarium spp.). The use of fungicides, which have traditionally been employed to control these phytopathogens, is now facing challenges due to the emergence of fungicide-resistant strains. Streptomyces bacillaris S8 strain S8 is previously known to produce valinomycin t through a nonribosomal peptide synthetase (NRPS) pathway. The objective of this study was to evaluate the antifungal activity of S. bacillaris S8 against C. truncatum and Fusarium sp., assessing its efficacy against soybean pathogens. The results indicate that strain S8 effectively controlled both above-ground and underground soybean diseases, using the NRPS and NRPS-related compound, suggesting its potential as a biological control in plant-microbe interactions. These findings underscore the pivotal role of the stain S8 in fostering healthy soybean microbial communities and emphasize the significance of microbiota structure studies in unveiling potent biocontrol agents.

2.
Microbiome ; 9(1): 244, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930485

RESUMO

BACKGROUND: Plants in nature interact with other species, among which are mutualistic microorganisms that affect plant health. The co-existence of microbial symbionts with the host contributes to host fitness in a natural context. In turn, the composition of the plant microbiota responds to the environment and the state of the host, raising the possibility that it can be engineered to benefit the plant. However, technology for engineering the structure of the plant microbiome is not yet available. RESULTS: The loss of diversity and reduction in population density of Streptomyces globisporus SP6C4, a core microbe, was observed coincident with the aging of strawberry plants. Here, we show that glutamic acid reshapes the plant microbial community and enriches populations of Streptomyces, a functional core microbe in the strawberry anthosphere. Similarly, in the tomato rhizosphere, treatment with glutamic acid increased the population sizes of Streptomyces as well as those of Bacillaceae and Burkholderiaceae. At the same time, diseases caused by species of Botrytis and Fusarium were significantly reduced in both habitats. We suggest that glutamic acid directly modulates the composition of the microbiome community. CONCLUSIONS: Much is known about the structure of plant-associated microbial communities, but less is understood about how the community composition and complexity are controlled. Our results demonstrate that the intrinsic level of glutamic acid in planta is associated with the composition of the microbiota, which can be modulated by an external supply of a biostimulant. Video Abstract.


Assuntos
Ácido Glutâmico , Microbiota , Raízes de Plantas , Plantas , Rizosfera , Microbiologia do Solo
3.
Phys Chem Chem Phys ; 23(42): 24180-24186, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34676382

RESUMO

We obtained ultraviolet photodissociation (UVPD) circular dichroism (CD) spectra of protonated L-phenylalanyl-L-alanine (L-H+PheAla) near the origin band of the S0-S1 transition using cryogenic ion spectroscopy. Infrared (IR) ion-dip, IR-UV hole burning (HB) and UV-UV HB spectra showed that L-H+PheAla existed as two different conformers in a cryogenic ion trap, and they had nearly identical peptide backbones but different conformations in the Phe side chain. The UVPD CD spectra revealed that the two conformers had opposite CD signs and significantly different CD magnitudes from each other. These results demonstrate that the CD value of L-H+PheAla near the origin band is strongly influenced by the conformation of the Phe side chain.


Assuntos
Dipeptídeos/química , Dicroísmo Circular , Teoria da Densidade Funcional , Íons/química , Processos Fotoquímicos , Prótons , Espectrofotometria Infravermelho , Raios Ultravioleta
4.
Mycobiology ; 48(5): 423-426, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33177922

RESUMO

Cypripedium japonicum is known to be the indigenous plant to Korea, Japan, and China. However, C. japonicum represents the most critically endangered plant species in South Korea. The plant is esthetically pleasing due to its flower, which is larger than any other orchidaceous species. Disease symptoms relating to gray mold were observed on C. japonicum in May 2019. The suspected pathogen was successfully isolated from the symptomatic leaf tissue and conducted a pure culture of the fungi. The conidia formed consisted of a colorless or light brown single cell, which was either egg or oval-shaped with a size of 7.1 to 13.4 × 5.2 to 8.6 µm. Molecular phylogenetic relationship analysis was also confirmed that the pathogen concerned belonging to the family of Botrytis cinerea. Therefore, the findings confirmed that the pathogen isolated from C. japonicum was consistent with the unique properties of B. cinerea.

5.
Data Brief ; 31: 105824, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32577455

RESUMO

Members of the genus Paenibacillus are known for their production of useful substances, and some species of the genus are recognized to be plant growth-promoting rhizobacteria. Paenibacillus polymyxa TH2H2, isolated from a tomato flower, had antifungal activity. Here, the draft genome sequence of Paenibacillus polymyxa TH2H2 is reported. The 5,983,104-bp genome, with a G+C content of 45.31%, comprised 5,221 protein-coding genes, 64 ribosomal RNA and 100 transfer RNA. Three intact antibiotic biosynthesis gene clusters were identified using antiSMASH. These encoded the antifungal agent fusaricidin and two antibacterial agents, tridecaptin and polymyxin. Sequence data have been deposited in the DDBJ/ENA/GenBank database under the accession number RPDG01000000. The version described in this paper is RPDG00000000.1. The BioProject ID in the GenBank database is PRJNA505713.

6.
J Phys Chem Lett ; 11(11): 4367-4371, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32396359

RESUMO

Circular dichroism (CD) spectra contain information about absolute configurations and conformations of chiral compounds. However, extracting this information from CD spectra in solution is challenging, because the spectra exhibit only the averaged CD values of all different conformers. CD spectroscopy of jet-cooled molecules can provide conformation-specific CD spectra, but its application to biomolecules has been limited due to the difficulty of their production in the gas phase. Here, we obtained the first CD spectra of chiral molecular ions produced by electrospray ionization (ESI) using cold ion CD spectroscopy. Protonated l- or d-phenylalanine ions produced by ESI were stored in a cold quadrupole ion trap and irradiated by multiple laser pulses with left or right circular polarization. The CD spectra exhibited well-resolved CD bands of two conformers, whose signs were opposite to each other. This study will broaden the scope of conformation-resolved CD spectroscopy to large molecular ions without size limitations.

7.
J Nat Prod ; 83(2): 277-285, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32073848

RESUMO

The cultivation of a Streptomyces sp. SD53 strain isolated from the gut of the silkworm Bombyx mori produced two macrolactam natural products, piceamycin (1) and bombyxamycin C (2). The planar structures of 1 and 2 were identified by a combination of NMR, MS, and UV spectroscopic analyses. The absolute configurations were assigned based on chemical and chromatographic methods as well as ECD calculations. A new chromatography-based experimental method for determining the configurations of stereogenic centers ß to nitrogen atoms in macrolactams was established and successfully applied in this report. These compounds exhibited significant bioactivities against the silkworm entomopathogen Bacillus thuringiensis and various human pathogens as well as human cancer cell lines. In particular, piceamycin potently inhibited Salmonella enterica and Proteus hauseri with MIC values of 0.083 µg/mL and 0.025 µg/mL, respectively. The biosynthetic pathway involved in the formation of the cyclopentenone moiety in piceamycin is discussed.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/química , Lactamas Macrocíclicas/química , Streptomyces/química , Antibacterianos/química , Produtos Biológicos/metabolismo , Vias Biossintéticas , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteus/química , Estereoisomerismo
8.
Front Bioeng Biotechnol ; 8: 530067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520947

RESUMO

There is increasing attention being paid to utilizing microbial communities to improve plant health while reducing management inputs. Thus, the objectives of this research were to assess changes in the rhizosphere bacterial community structure associated with long-term turfgrass monoculture and to demonstrate the feasibility of using functional bacteria as beneficial biocontrol agents. Large patch disease, caused by the fungal pathogen Rhizoctonia solani AG2-2, is a significant threat to turfgrass cultivation. Rhizosphere samples were collected from 2-, 13- and 25-year turfgrass (Zoysia japonica) monocultures. The 13-year monoculture field had a higher pathogen population density than both the 2- and 25-year monoculture fields. Analyses of the rhizosphere bacterial communities revealed that Streptomyces was dominant in the 2-year field and Burkholderia was enriched in the 25-year field. Based on the culturable rhizosphere bacteria, Streptomyces neyagawaensis J6 and Burkholderia vietnamiensis J10 were obtained from the 2- and 25-year fields, respectively. Application of S. neyagawaensis J6 and B. vietnamiensis J10 led to excellent inhibition of large patch disease as well as enhanced tolerance against drought and temperature stresses. The results showed that the selected bacteria could be developed as biocontrol and abiotic stress tolerance agents for turfgrass cultivation.

9.
Nat Commun ; 10(1): 4802, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641114

RESUMO

Microbes can establish mutualistic interactions with plants and insects. Here we track the movement of an endophytic strain of Streptomyces bacteria throughout a managed strawberry ecosystem. We show that a Streptomyces isolate found in the rhizosphere and on flowers protects both the plant and pollinating honeybees from pathogens (phytopathogenic fungus Botrytis cinerea and pathogenic bacteria, respectively). The pollinators can transfer the Streptomyces bacteria among flowers and plants, and Streptomyces can move into the plant vascular bundle from the flowers and from the rhizosphere. Our results present a tripartite mutualism between Streptomyces, plant and pollinator partners.


Assuntos
Abelhas/fisiologia , Fragaria/fisiologia , Streptomyces/fisiologia , Animais , Botrytis/patogenicidade , Flores , Fragaria/microbiologia , Doenças das Plantas/microbiologia , Pólen , Polinização , RNA Ribossômico 16S , República da Coreia , Esporos Fúngicos , Streptomyces/genética , Simbiose
10.
World J Microbiol Biotechnol ; 35(8): 128, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375920

RESUMO

Large patch disease, caused by Rhizoctonia solani AG2-2, is the most devastating disease in Zoysiagrass (Zoysia japonica). Current large patch disease control strategies rely primarily upon the use of chemical pesticides. Streptomyces sp. S8 is known to possess exceptional antagonistic properties that could potentially suppress the large patch pathogen found at turfgrass plantations. This study aims to demonstrate the feasibility of using the strain as a biological control mechanism. Sequencing of the S8 strain genome revealed a valinomycin biosynthesis gene cluster. This cluster is composed of the vlm1 and vlm2 genes, which are known to produce antifungal compounds. In order to verify this finding for the large patch pathogen, a valinomycin biosynthesis knockout mutant was created via the CRISPR/Cas9 system. The mutant lost antifungal activity against the large patch pathogen. Consequently, it is anticipated that eco-friendly microbial preparations derived from the S8 strain can be utilized to biologically control large patch disease.


Assuntos
Antifúngicos/metabolismo , Antifúngicos/farmacologia , Rhizoctonia/efeitos dos fármacos , Streptomyces/metabolismo , Valinomicina/metabolismo , Valinomicina/farmacologia , Vias Biossintéticas/genética , Técnicas de Inativação de Genes , Genoma Bacteriano , Família Multigênica , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Poaceae/microbiologia , Rhizoctonia/crescimento & desenvolvimento , Análise de Sequência de DNA , Streptomyces/genética
11.
Mol Plant Microbe Interact ; 32(3): 306-312, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30256170

RESUMO

Streptomyces griseus S4-7 is representative of strains responsible for the specific soil suppressiveness of Fusarium wilt of strawberry caused by Fusarium oxysporum f. sp. fragariae. Members of the genus Streptomyces secrete diverse secondary metabolites including lantipeptides, heat-stable lanthionine-containing compounds that can exhibit antibiotic activity. In this study, a class II lantipeptide provisionally named grisin, of previously unknown biological function, was shown to inhibit F. oxysporum. The inhibitory activity of grisin distinguishes it from other class II lantipeptides from Streptomyces spp. Results of quantitative reverse transcription-polymerase chain reaction with lanM-specific primers showed that the density of grisin-producing Streptomyces spp. in the rhizosphere of strawberry was positively correlated with the number of years of monoculture and a minimum of seven years was required for development of specific soil suppressiveness to Fusarium wilt disease. We suggest that lanM can be used as a diagnostic marker of whether a soil is conducive or suppressive to the disease.


Assuntos
Fragaria , Fusarium , Microbiologia do Solo , Solo/química , Antibacterianos/metabolismo , Fragaria/microbiologia , Doenças das Plantas/prevenção & controle , Estreptotricinas/metabolismo
12.
Fungal Biol ; 122(11): 1098-1108, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30342625

RESUMO

Take-all disease, caused by Gaeumannomyces graminis var. tritici (Ggt), is one of the most serious root diseases in wheat production. In this study, a proteomic platform based on 2-dimensional gel electrophoresis (2-DE) and Matrix-Assisted Laser Desorption/Ionization Time of Flight Tandem Mass Spectrometry (MALDI-TOF/TOF MS) was used to construct the first proteome database reference map of G. graminis var. tritici and to identify the response of the pathogen to 2,4-diacetylphloroglucinol (DAPG), which is a natural antibiotic produced by antagonistic Pseudomonas spp. in take-all suppressive soils. For mapping, a total of 240 spots was identified that represented 209 different proteins. The most abundant biological function categories in the Ggt proteome were related to carbohydrate metabolism (21%), amino acid metabolism (15%), protein folding and degradation (12%), translation (11%), and stress response (10%). In total, 51 Ggt proteins were affected by DAPG treatment. Based on gene ontology, carbohydrate metabolism, amino acid metabolism, stress response, and protein folding and degradation proteins were the ones most modulated by DAPG treatment. This study provides the first extensive proteomic reference map constructed for Ggt and represents the first time that the response of Ggt to DAPG has been characterized at the proteomic level.


Assuntos
Ascomicetos/efeitos dos fármacos , Proteínas Fúngicas/química , Fungicidas Industriais/farmacologia , Floroglucinol/análogos & derivados , Proteoma/química , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Eletroforese em Gel Bidimensional , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/metabolismo , Floroglucinol/metabolismo , Floroglucinol/farmacologia , Doenças das Plantas/microbiologia , Proteoma/genética , Proteoma/metabolismo , Proteômica , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triticum/microbiologia
13.
Plant Pathol J ; 34(3): 163-170, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29887772

RESUMO

Strawberry Fusarium wilt disease, caused by Fusarium oxysporum f. sp. fragariae, is the most devastating disease in strawberry production. The pathogen produces chlamydospores which tolerate against harsh environment, fungicide and survive for decades in soil. Development of detection and quantification techniques are regarded significantly in many soilborne pathogens to prevent damage from diseases. In this study, we improved specific-quantitative primers for F. oxysporum f. sp. fragariae to reveal correlation between the pathogen density and the disease severity. Standard curve r2 value of the specific-quantitative primers for qRT-PCR and meting curve were over 0.99 and 80.5°C, respectively. Over pathogen 105 cfu/g of soil was required to cause the disease in both lab and field conditions. With the minimum density to develop the wilt disease, the pathogen affected near 60% in nursery plantation. A biological control microbe agent and soil solarization reduced the pathogen population 2-fold and 1.5-fold in soil, respectively. The developed F. oxysporum f. sp. fragariae specific qRT-PCR protocol may contribute to evaluating soil healthiness and appropriate decision making to control the disease.

14.
Plant Pathol J ; 34(2): 143-149, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628821

RESUMO

Flowers of kiwifruit are morphologically hermaphroditic and survivable binucleate pollen is produced by the male flowers. In this study, we investigated microbial diversity in kiwifruit pollens by analyzing amplicon sequences of 16S rRNA. Four pollen samples were collected: 'NZ' was imported from New Zealand, 'CN' from China in year of 2014, respectively. 'KR13' and 'KR14' were collected in 2013' and 2014' in South Korea. Most of the identified bacterial phyla in the four different pollens were Proteobacteria, Actinobacteria and Firmicutes. However, the imported and the domestic pollen samples showed different aspects of microbial community structures. The domestic pollens had more diverse in diversity than the imported samples. Among top 20 OTUs, Pseudomonas spp. was the most dominant specie. Interestingly, a bacterial pathogen of kiwifruit canker, Pseudomonas syringae pv. actinidiae was detected in 'NZ' by the specific PCR. This study provides insights microbial distribution and community structure information in kiwifruit pollen.

15.
Plant Pathol J ; 32(4): 290-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27493604

RESUMO

Strawberry bacterial angular leaf spot (ALS) disease, caused by Xanthomonas fragariae has become increasingly problematic in the strawberry agro-industry. ALS causes small angular water-soaked lesions to develop on the abaxial leaf surface. Studies reported optimum temperature conditions for X. fragariae are 20°C and the pathogen suffers mortality above 32°C. However, at the nursery stage, disease symptoms have been observed under high temperature conditions. In the present study, results showed X. fragariae transmission was via infected maternal plants, precipitation, and sprinkler irrigation systems. Systemic infections were detected using X. fragariae specific primers 245A/B and 295A/B, where 300-bp and 615-bp were respectively amplified. During the nursery stage (from May to August), the pathogen was PCR detected only in maternal plants, but not in soil or irrigation water through the nursery stage. During the cultivation period, from September to March, the pathogen was detected in maternal plants, progeny, and soil, but not in water. Additionally, un-infected plants, when planted with infected plants were positive for X. fragariae via PCR at the late cultivation stage. Chemical control for X. fragariae with oxolinic acid showed 87% control effects against the disease during the nursery period, in contrast to validamycin-A, which exhibited increased efficacy against the disease during the cultivation stage (control effect 95%). To our knowledge, this is the first epidemiological study of X. fragariae in Korean strawberry fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...