Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(17): 6349-6362, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699251

RESUMO

Careful control of electronic properties, structural order, and solubility of π-conjugated polymers is central to the improvement of organic photovoltaic (OPV) performance. In this work, we designed and synthesized a series of naphthobisthiadiazole-quaterthiophene copolymers by systematically replacing the alkyl groups with ester groups and changing the position of the fluorine groups in the quaterthiophene moiety. These alterations lowered the HOMO and LUMO energy levels and systematically varied the combination of intramolecular noncovalent interactions such as O⋯S and F⋯S interactions in the backbone. More importantly, although the introduction of such noncovalent interactions often lowers the solubility owing to the interlocking of backbone linkages, we found that careful design of the noncovalent interactions afforded polymers with relatively high solubility and high crystallinity at the same time. As a result, the power conversion efficiency of OPV cells that used fullerene (PC61BM) and nonfullerene (Y12) as the acceptor was improved. Our work offers important information for the development of high-performance π-conjugated polymers for OPVs.

2.
Materials (Basel) ; 16(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834598

RESUMO

The decommissioning process of nuclear power facilities renders hundreds of thousands of tons of various types of waste. Of these different waste types, the amount of concrete waste (CW) varies greatly depending on the type of facility, operating history, and regulation standards. From the previous decommissioning projects, CW was estimated to comprise 60-80 wt.% of the total weight of radioactive wastes. This represents a significant technical challenge to any decommissioning project. Furthermore, the disposal costs for the generated concrete wastes are a substantial part of the total budget for any decommissioning project. Thus, the development of technologies effective for the reduction and recycling of CW has become an urgent agenda globally. Blast furnace slag (BFS) is an industrial byproduct containing a sufficient amount (higher than 30%) of CaO and it can be used as a substitute for ordinary Portland cement (OPC). However, there have been few studies on the application of BFS for the treatment of radioactive waste from decommissioning processes. This study was conducted to evaluate the performance of the solidification agent using ground granulated BFS (SABFS) to pack radioactive wastes, such as the coarse aggregates of CW (CACW), waste soil (WS), and metal waste (MW). The analytical results indicated that the CaO content of the ground granulated BFS was 36.8% and it was confirmed that calcium silicate hydrate (CSH) could be activated as the precursor of the hydration reactions. In addition, the optimum water-to-binder ratio was determined to be 0.25 and Ca(OH)2 and CaSO4 were found to be the most effective alkaline and sulfate activators for improving the compressive strength of the SABFS. The maximum packing capacities of the SABFS were determined to be 9 and 13 wt.% for WC and WM, respectively, when the content of CW was fixed at 50 wt.%. The results of the leaching tests using SABFS containing radioactive wastes contaminated with Co, Cs, and Sr indicated that their leachability indices met the acceptance level for disposal. Consequently, the SABFS can be used as a solidifying agent for the safe disposal of radioactive waste.

3.
Adv Sci (Weinh) ; 10(5): e2205682, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529702

RESUMO

In π $\upi$ -conjugated polymers, a highly ordered backbone structure and solubility are always in a trade-off relationship that must be overcome to realize highly efficient and solution-processable organic photovoltaics (OPVs). Here, it is shown that a π $\upi$ -conjugated polymer based on a novel thiazole-fused ring, thieno[2',3':5,6]benzo[1,2-d:4,3-d']bisthiazole (TBTz) achieves both high backbone order and high solubility due to the structural feature of TBTz such as the noncovalent interlocking of the thiazole moiety, the rigid and bent-shaped structure, and the fused alkylthiophene ring. Furthermore, based on the electron-deficient nature of these thiazole-fused rings, the polymer exhibits deep HOMO energy levels, which lead to high open-circuit voltages (VOC s) in OPV cells, even without halogen substituents that are commonly introduced into high-performance polymers. As a result, when the polymer is combined with a typical nonfullerene acceptor Y6, power conversion efficiencies of reaching 16% and VOC s of more than 0.84 V are observed, both of which are among the top values reported so far for "halogen-free" polymers. This study will serve as an important reference for designing π $\upi$ -conjugated polymers to achieve highly efficient and solution-processable OPVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...