Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Bio Med Chem Au ; 3(5): 461-470, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37876499

RESUMO

Enzymes in glucose metabolism have been subjected to numerous studies, revealing the importance of their biological roles during the cell cycle. However, due to the lack of viable experimental strategies for measuring enzymatic activities particularly in living human cells, it has been challenging to address whether their enzymatic activities and thus anticipated glucose flux are directly associated with cell cycle progression. It has remained largely elusive how human cells regulate glucose metabolism at a subcellular level to meet the metabolic demands during the cell cycle. Meanwhile, we have characterized that rate-determining enzymes in glucose metabolism are spatially organized into three different sizes of multienzyme metabolic assemblies, termed glucosomes, to regulate the glucose flux between energy metabolism and building block biosynthesis. In this work, we first determined using cell synchronization and flow cytometric techniques that enhanced green fluorescent protein-tagged phosphofructokinase is adequate as an intracellular biomarker to evaluate the state of glucose metabolism during the cell cycle. We then applied fluorescence single-cell imaging strategies and discovered that the percentage of Hs578T cells showing small-sized glucosomes is drastically changed during the cell cycle, whereas the percentage of cells with medium-sized glucosomes is significantly elevated only in the G1 phase, but the percentage of cells showing large-sized glucosomes is barely or minimally altered along the cell cycle. Should we consider our previous localization-function studies that showed assembly size-dependent metabolic roles of glucosomes, this work strongly suggests that glucosome sizes are modulated during the cell cycle to regulate glucose flux between glycolysis and building block biosynthesis. Therefore, we propose the size-specific modulation of glucosomes as a behind-the-scenes mechanism that may explain functional association of glucose metabolism with the cell cycle and, thereby, their metabolic significance in human cell biology.

2.
J Biol Chem ; 298(3): 101675, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122791

RESUMO

A multienzyme metabolic assembly for human glucose metabolism, namely the glucosome, has been previously demonstrated to partition glucose flux between glycolysis and building block biosynthesis in an assembly size-dependent manner. Among three different sizes of glucosome assemblies, we have shown that large-sized glucosomes are functionally associated with the promotion of serine biosynthesis in the presence of epidermal growth factor (EGF). However, due to multifunctional roles of EGF in signaling pathways, it is unclear which EGF-mediated signaling pathways promote these large glucosome assemblies in cancer cells. In this study, we used Luminex multiplexing assays and high-content single-cell imaging to demonstrate that EGF triggers temporal activation of extracellular signal-regulated kinases 1/2 (ERK1/2) in Hs578T cells. Subsequently, we found that treatments with a pharmacological inhibitor of ERK1/2, SCH772984, or short-hairpin RNAs targeting ERK1/2 promote the dissociation of large-sized assemblies to medium-sized assemblies in Hs578T cells. In addition, our Western blot analyses revealed that EGF treatment does not increase the expression levels of enzymes that are involved in both glucose metabolism and serine biosynthesis. The observed spatial transition of glucosome assemblies between large and medium sizes appears to be mediated by the degree of dynamic partitioning of glucosome enzymes without changing their expression levels. Collectively, our study demonstrates that EGF-ERK1/2 signaling pathways play an important role in the upregulation of large-sized glucosomes in cancer cells, thus functionally governing the promotion of glycolysis-derived serine biosynthesis.


Assuntos
Fator de Crescimento Epidérmico , Glucose , Sistema de Sinalização das MAP Quinases , Complexos Multienzimáticos , Fator de Crescimento Epidérmico/metabolismo , Glucose/metabolismo , Humanos , Complexos Multienzimáticos/metabolismo , Fosforilação , Serina/metabolismo , Frações Subcelulares/metabolismo
3.
Methods Enzymol ; 628: 1-17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31668224

RESUMO

Sequential metabolic enzymes have long been hypothesized to form multienzyme metabolic complexes to regulate metabolic flux in cells. Although in vitro biochemistry has not been fruitful to support the hypothesis, advanced biophysical technologies have successfully resurrected the hypothesis with compelling experimental evidence. As biochemistry has always evolved along with technological advancement over the century (e.g., recombinant protein expression, site-directed mutagenesis, advanced spectroscopy and structural biology techniques, etc.), there has been growing interest in advanced imaging-based biophysical methods to explore enzymes inside living cells. In this work, we describe how we visualize two phase-separated biomolecular condensates of multienzyme metabolic complexes that are associated with de novo purine biosynthesis and glucose metabolism in living human cells and how imaging-based data are quantitatively analyzed to advance our knowledge of enzymes and their assemblies in living cells. Therefore, we envision that the framework we describe here would be the starting point to investigate other metabolic enzymes and their assemblies in various cell types with an unprecedented potential to comprehend enzymes and their network in native habitats.


Assuntos
Glucose/metabolismo , Metabolômica/métodos , Complexos Multienzimáticos/metabolismo , Purinas/metabolismo , Vias Biossintéticas , Linhagem Celular , Humanos , Metaboloma , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Transição de Fase , Análise de Célula Única/métodos
4.
PLoS One ; 13(4): e0195989, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29668719

RESUMO

A macromolecular complex of the enzymes involved in human de novo purine biosynthesis, the purinosome, has been shown to consist of a core assembly to regulate the metabolic activity of the pathway. However, it remains elusive whether the core assembly itself can be selectively controlled in the cytoplasm without promoting the purinosome. Here, we reveal that pharmacological inhibition of the cytoplasmic activity of 3-phosphoinositide-dependent protein kinase 1 (PDK1) selectively promotes the formation of the core assembly, but not the purinosome, in cancer cells. However, alternative signaling cascades that are associated with the plasma membrane-bound PDK1 activity, including Akt-mediated cascades, regulate neither the core assembly nor the purinosome in our conditions. Along with immunofluorescence microscopy and a knock-down study against PDK1 using small interfering RNAs, we reveal that cytoplasmic PDK1-associated signaling pathways regulate subcellular colocalization of three enzymes that form the core assembly of the purinosome in an Akt-independent manner. Collectively, this study reveals a new mode of compartmentalization of purine biosynthetic enzymes controlled by spatially resolved signaling pathways.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/biossíntese , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Biomarcadores , Membrana Celular/metabolismo , Imunofluorescência , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Imuno-Histoquímica , Redes e Vias Metabólicas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
5.
Sci Rep ; 8(1): 2696, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426820

RESUMO

We have recently demonstrated that the rate-limiting enzymes in human glucose metabolism organize into cytoplasmic clusters to form a multienzyme complex, the glucosome, in at least three different sizes. Quantitative high-content imaging data support a hypothesis that the glucosome clusters regulate the direction of glucose flux between energy metabolism and building block biosynthesis in a cluster size-dependent manner. However, direct measurement of their functional contributions to cellular metabolism at subcellular levels has remained challenging. In this work, we develop a mathematical model using a system of ordinary differential equations, in which the association of the rate-limiting enzymes into multienzyme complexes is included as an essential element. We then demonstrate that our mathematical model provides a quantitative principle to simulate glucose flux at both subcellular and population levels in human cancer cells. Lastly, we use the model to simulate 2-deoxyglucose-mediated alteration of glucose flux in a population level based on subcellular high-content imaging data. Collectively, we introduce a new mathematical model for human glucose metabolism, which promotes our understanding of functional roles of differently sized multienzyme complexes in both single-cell and population levels.


Assuntos
Glucose/metabolismo , Metabolismo dos Carboidratos , Análise por Conglomerados , Metabolismo Energético , Humanos , Modelos Biológicos , Modelos Teóricos
6.
J Biol Chem ; 292(22): 9191-9203, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28424264

RESUMO

Sequential metabolic enzymes in glucose metabolism have long been hypothesized to form multienzyme complexes that regulate glucose flux in living cells. However, it has been challenging to directly observe these complexes and their functional roles in living systems. In this work, we have used wide-field and confocal fluorescence microscopy to investigate the spatial organization of metabolic enzymes participating in glucose metabolism in human cells. We provide compelling evidence that human liver-type phosphofructokinase 1 (PFKL), which catalyzes a bottleneck step of glycolysis, forms various sizes of cytoplasmic clusters in human cancer cells, independent of protein expression levels and of the choice of fluorescent tags. We also report that these PFKL clusters colocalize with other rate-limiting enzymes in both glycolysis and gluconeogenesis, supporting the formation of multienzyme complexes. Subsequent biophysical characterizations with fluorescence recovery after photobleaching and FRET corroborate the formation of multienzyme metabolic complexes in living cells, which appears to be controlled by post-translational acetylation on PFKL. Importantly, quantitative high-content imaging assays indicated that the direction of glucose flux between glycolysis, the pentose phosphate pathway, and serine biosynthesis seems to be spatially regulated by the multienzyme complexes in a cluster-size-dependent manner. Collectively, our results reveal a functionally relevant, multienzyme metabolic complex for glucose metabolism in living human cells.


Assuntos
Glucose/metabolismo , Glicólise/fisiologia , Complexos Multienzimáticos/metabolismo , Via de Pentose Fosfato/fisiologia , Fosfofrutoquinase-1 Hepática/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Glucose/genética , Células HeLa , Humanos , Complexos Multienzimáticos/genética , Fosfofrutoquinase-1 Hepática/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...