Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Med Child Neurol ; 66(8): 1096-1105, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38303153

RESUMO

AIM: We compared three different intensities of robot-assisted gait training (RAGT) for achieving favourable outcomes in children with cerebral palsy (CP). METHOD: This study was conducted using a randomized controlled, single-blind design. Thirty children (19 males and 11 females; mean age 6 years 1 month, SD 2 years) with CP classified in Gross Motor Function Classification System levels II and III were assigned to three different RAGT intensity groups: high-intensity (fastest walking speed and lowest body weight support [BWS]), low-intensity (slowest speed and highest BWS), and comfortable intensity (intermediate speed and intermediate BWS). The RAGT intervention was performed three times a week for 6 weeks. Outcome measures included the 88-item Gross Motor Function Measure, stability index, spatiotemporal parameters of gait analysis, paediatric functional independence measure, and the Canadian Occupational Performance Measure. RESULTS: The 88-item Gross Motor Function Measure was significantly improved after training in the high-intensity (D Δ8.3 ± 15.6; E Δ3.8 ± 4.1) and comfortable intensity (D Δ2.9 ± 3.1; E Δ1.2 ± 2.0) groups, whereas gait speed was improved in the comfortable intensity group, without statistically significant group differences. Only the low-intensity group showed improvement on the stability index (Δ -0.6 ± 0.9, p = 0.05). Everyday functional performance significantly improved in all three groups, with the comfortable intensity group showing the greatest improvement. INTERPRETATION: Different training intensities produced improvement in different areas; individualized RAGT intensity adjustment is therefore needed based on the rehabilitation goal.


Assuntos
Paralisia Cerebral , Robótica , Humanos , Paralisia Cerebral/reabilitação , Paralisia Cerebral/fisiopatologia , Criança , Masculino , Feminino , Método Simples-Cego , Terapia por Exercício/métodos , Pré-Escolar , Resultado do Tratamento , Marcha/fisiologia , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Avaliação de Resultados em Cuidados de Saúde
2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619098

RESUMO

Acetogenic bacteria use cellular redox energy to convert CO2 to acetate using the Wood-Ljungdahl (WL) pathway. Such redox energy can be derived from electrons generated from H2 as well as from inorganic materials, such as photoresponsive semiconductors. We have developed a nanoparticle-microbe hybrid system in which chemically synthesized cadmium sulfide nanoparticles (CdS-NPs) are displayed on the cell surface of the industrial acetogen Clostridium autoethanogenum The hybrid system converts CO2 into acetate without the need for additional energy sources, such as H2, and uses only light-induced electrons from CdS-NPs. To elucidate the underlying mechanism by which C. autoethanogenum uses electrons generated from external energy sources to reduce CO2, we performed transcriptional analysis. Our results indicate that genes encoding the metal ion or flavin-binding proteins were highly up-regulated under CdS-driven autotrophic conditions along with the activation of genes associated with the WL pathway and energy conservation system. Furthermore, the addition of these cofactors increased the CO2 fixation rate under light-exposure conditions. Our results demonstrate the potential to improve the efficiency of artificial photosynthesis systems based on acetogenic bacteria integrated with photoresponsive nanoparticles.


Assuntos
Acetatos/química , Proteínas de Bactérias/metabolismo , Compostos de Cádmio/química , Dióxido de Carbono/química , Clostridium/metabolismo , Elétrons , Nanopartículas/química , Sulfetos/química , Acetatos/metabolismo , Processos Autotróficos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Compostos de Cádmio/metabolismo , Dióxido de Carbono/metabolismo , Clostridium/genética , Clostridium/efeitos da radiação , Coenzimas/química , Coenzimas/metabolismo , Dinitrocresóis/química , Dinitrocresóis/metabolismo , Metabolismo Energético/genética , Regulação Bacteriana da Expressão Gênica , Luz , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo , Nanopartículas/metabolismo , Fotossíntese/genética , Sulfetos/metabolismo , Transcrição Gênica
3.
ACS Appl Mater Interfaces ; 12(27): 30112-30119, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32517464

RESUMO

Eggshell membrane has selective permeability that enables gas or liquid molecules to pass through while effectively preventing migration of microbial species. Herein, inspired by the architecture of the eggshell membrane, we employ three-dimensional (3D) printing techniques to realize bioresponsive devices with excellent selective permeability for effective biochemical conversion. The fabricated devices show 3D conductive carbon nanofiber membranes in which precultured microbial cells are controllably deployed. The resulting outcome provides excellent selective permeability between chemical and biological species, which enables acquisition of target responses generated by biological species confined within the device upon input signals. In addition, electrically conductive carbon nanofiber networks provide a platform for real-time monitoring of metabolism of microbial cells in the device. The suggested platform represents an effort to broaden microbial applications by constructing biologically programmed devices for desired responses enabled by designated deployment of engineered cells in a securely confined manner within enclosed membranes using 3D printing methods.


Assuntos
Nanofibras/química , Nanopartículas/química , Impressão Tridimensional
4.
ACS Appl Mater Interfaces ; 11(21): 18968-18977, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31046215

RESUMO

A viable approach for methanol production under ambient physiological conditions is to use greenhouse gases, methane (CH4) and carbon dioxide (CO2), as feed for immobilized methanotrophs. In the present study, unique macroporous carbon particles with pore sizes in the range of ∼1-6 µm were synthesized and used as support for the immobilization of Methylocella tundrae. Immobilization was accomplished covalently on hierarchical macroporous carbon particles. Maximal cell loading of covalently immobilized M. tundrae was 205 mgDCM g-1 of particles. Among these particles, the cells immobilized on 3.6 µm pore size particles showed the highest reusability with the least leaching and were chosen for further study. After immobilization, M. tundrae showed up to 2.4-fold higher methanol production stability at various pH and temperature values because of higher stability and metabolic activity than free cells. After eight cycles of reuse, the immobilized cells retained 18.1-fold higher relative production stability compared to free cells. Free and immobilized cells exhibited cumulative methanol production of 5.2 and 9.5 µmol mgDCM-1 under repeated batch conditions using simulated biogas [CH4 and CO2, 4:1 (v/v)] as feed, respectively. The appropriate pore size of macroporous particles favors the efficient M. tundrae immobilization to retain better biocatalytic properties. This is the first report concerning the covalent immobilization of methanotrophs on the newly synthesized macroporous carbon particles and its subsequent application in repeated methanol production using simulated biogas as a feed.


Assuntos
Biotecnologia/métodos , Células Imobilizadas/metabolismo , Gases de Efeito Estufa/análise , Metanol/análise , Bactérias/citologia , Biocombustíveis/análise , Carbono/química , Metano/análise , Porosidade
5.
ACS Nano ; 11(7): 6853-6859, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514135

RESUMO

An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...