Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(23): 6923-6934, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34062060

RESUMO

The promising reactive sorbent zirconium hydroxide (ZH) was challenged with common environmental contaminants (CO2, SO2, and NO2) to determine the impact on chemical warfare agent decomposition. Several environmental adsorbates rapidly formed on the ZH surface through available hydroxyl species and coordinatively unsaturated zirconium sites. ZH decontamination effectiveness was determined using a suite of instrumentation including in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor sarin (GB) decomposition in real time and at ambient pressure. Surface products were characterized by ex situ X-ray photoelectron spectroscopy (XPS). The adsorption enthalpies, entropies, and bond lengths for environmental contaminants and GB decomposition products were estimated using density functional theory (DFT). Consistent with the XPS and DRIFTS results, DFT simulations predicted the relative stabilities of molecular adsorbates and reaction products in the following order: CO2 < NO2 < GB ≈ SO2. Microbreakthrough capacity measurements on ZH showed a 7-fold increase in the sorption of NO2 vs SO2, which indicates differences in the surface reactivity of these species. GB decomposition was rapid on clean and CO2-dosed ZH and showed reduced decomposition on SO2- and NO2-predosed samples. Despite these findings, the total GB sorption capacity of clean and predosed ZH was consistent across all samples. These data provide insight into the real-world use of ZH as a reactive sorbent for chemical decontamination applications.


Assuntos
Nanopartículas , Zircônio , Adsorção , Hidróxidos , Sarina/toxicidade
2.
Sci Rep ; 10(1): 16349, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004988

RESUMO

Recent progress achieved in metal-assisted chemical etching (MACE) has enabled the production of high-quality micropillar arrays for various optoelectronic applications. Si micropillars produced by MACE often show a porous Si/SiOx shell on crystalline pillar cores introduced by local electrochemical reactions. In this paper, we report the distinct optoelectronic characteristics of the porous Si/SiOx shell correlated to their chemical compositions. Local photoluminescent (PL) images obtained with an immersion oil objective lens in confocal microscopy show a red emission peak (≈ 650 nm) along the perimeter of the pillars that is threefold stronger compared to their center. On the basis of our analysis, we find an unexpected PL increase (≈ 540 nm) at the oil/shell interface. We suggest that both PL enhancements are mainly attributed to the porous structures, a similar behavior observed in previous MACE studies. Surface potential maps simultaneously recorded with topography reveal a significantly high surface potential on the sidewalls of MACE-synthesized pillars (+ 0.5 V), which is restored to the level of planar Si control (- 0.5 V) after removing SiOx in hydrofluoric acid. These distinct optoelectronic characteristics of the Si/SiOx shell can be beneficial for various sensor architectures.

3.
ACS Appl Mater Interfaces ; 12(13): 14662-14671, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105054

RESUMO

The decomposition mechanisms of dimethyl methylphosphonate (DMMP), a widely used simulant for organophosphorus chemical warfare agents (CWAs), are relatively well understood from previous studies. However, there still lacks a quantitative description of DMMP decomposition kinetics under ambient conditions that is relevant for sequestration applications. We investigated adsorption and decomposition kinetics of DMMP on amorphous zirconium hydroxide (ZH) using variable-temperature in situ attenuated total reflection (ATR) infrared spectroscopy. We demonstrate that quantifying DMMP decomposition kinetics using conventional methods, where the integrated absorbance of P-O vibrational modes is monitored, can be inaccurate because these spectra are also convoluted with C-O vibrational modes from transient surface methoxy species that are not proportional to DMMP decomposition due to methanol desorption. Here, we propose to use the ρ(PCH3) modes as an alternative way to track DMMP adsorption and decomposition reactions. On the basis of density functional theory (DFT) simulations and comparisons to relatively unreactive monoclinic zirconia (m-ZrO2), we assign the deconvoluted components of the ρ(PCH3) region and use it to monitor decomposition products over time at various temperatures. Because the PCH3 group is present in many toxic organophosphorus compounds, tracking the PCH3 bands in time-dependent IR spectra is useful for measuring surface kinetics of CWAs and their simulants on various decontamination materials.

4.
Opt Express ; 27(22): 32609-32620, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684469

RESUMO

We report the time resolved characterization of Fabry-Perot quantum cascade lasers (FP-QCLs). We are developing a custom-built broadband laser source in the Mid-LWIR range by combining several high power FP-QCLs for a single snap shot application. This white light source would enable not only stand-off detection applications in a single snapshot but also new data collection modalities such as live, real-time chemical imaging, requiring extremely rapid measurements. In this study, the two FP-QCLs were operated in CW and pulsed modes with varying applied currents and diode temperatures to optimize the best laser operation condition to cover a broad spectral range including spectral features for the analytes of interest. To understand mode behavior of the FP-QCLs in a short period of time, the spectral output for each test condition was temporally resolved. Under most of the conditions, FP mode hopping was observed during the time evolution through the pulse length (3000 ns). Based on the time-resolved spectra, the ideal spectral characteristics for a single snap shot application are discussed, with respect to a broad spectral bandwidth, a flat-top power profile, and high spectral power density.

5.
Nat Commun ; 7: 13263, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796294

RESUMO

The interest in mechanical properties of two-dimensional materials has emerged in light of new device concepts taking advantage of flexing, adhesion and friction. Here we demonstrate an effective method to measure adhesion of graphene atop highly ordered pyrolytic graphite, utilizing atomic-scale 'blisters' created in the top layer by neon atom intercalates. Detailed analysis of scanning tunnelling microscopy images is used to reconstruct atomic positions and the strain map within the deformed graphene layer, and demonstrate the tip-induced subsurface translation of neon atoms. We invoke an analytical model, originally devised for graphene macroscopic deformations, to determine the graphite adhesion energy of 0.221±0.011 J m-2. This value is in excellent agreement with reported macroscopic values and our atomistic simulations. This implies mechanical properties of graphene scale down to a few-nanometre length. The simplicity of our method provides a unique opportunity to investigate the local variability of nanomechanical properties in layered materials.

6.
ACS Nano ; 10(8): 7821-9, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27458890

RESUMO

Bulk molecular ionic solids exhibit fascinating electronic properties, including electron correlations, phase transitions, and superconducting ground states. In contrast, few of these phenomena have been observed in low-dimensional molecular structures, including thin films, nanoparticles, and molecular blends, not in the least because most of such structures have been composed of nearly closed-shell molecules. It is therefore desirable to develop low-dimensional ionic molecular structures that can capture potential applications. Here, we present detailed analysis of monolayer-thick structures of the canonical TTF-TCNQ (tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane) system grown on low-index gold and silver surfaces. The most distinctive property of the epitaxial growth is the wide abundance of stable TTF/TCNQ ratios, in sharp contrast to the predominance of a 1:1 ratio in the bulk. We propose the existence of the surface phase diagram that controls the structures of TTF-TCNQ on the surfaces and demonstrate phase transitions that occur upon progressively increasing the density of TCNQ while keeping the surface coverage of TTF fixed. Based on direct observations, we propose the binding motif behind the stable phases and infer the dominant interactions that enable the existence of the rich spectrum of surface structures. Finally, we also show that the surface phase diagram will control the epitaxy beyond monolayer coverage. Multiplicity of stable surface structures, the corollary rich phase diagram, and the corresponding phase transitions present an interesting opportunity for low-dimensional molecular systems, particularly if some of the electronic properties of the bulk can be preserved or modified in the surface phases.

7.
Nat Commun ; 6: 7081, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25953105

RESUMO

Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...