Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(1): e0099423, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38063430

RESUMO

Lactococcus lactis KCKM 0851 isolated from green onion kimchi is a probiotic candidate and can be used as a starter culture for kimchi and dairy products. The whole-genome data of this strain will help us understand its genetics and metabolic characteristics.

2.
Microbiol Resour Announc ; 13(1): e0090823, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38038465

RESUMO

Lactiplantibacillus plantarum KCKM 0106, isolated from mustard leaf kimchi, demonstrates probiotic properties, such as acid tolerance and adhesion to intestinal epithelial cells. We present the draft genome sequence of L. plantarum KCKM 0106, comprising 3,328,662 bp and 44.4% GC content.

3.
Fish Shellfish Immunol ; 137: 108741, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37088346

RESUMO

Haliotis discus hannai, a food with a high protein content, is widely consumed in Asian countries. It is known to have antioxidant, anticancer, and antibacterial effects. Since the biological significance of H. discus hannai hemolymph has not been widely studied, the objective of the present study was to purify phenoloxidase (PO) and investigate its immunological effects on human colonic epithelial cells. PO was purified through ammonium sulfate precipitation and one step column chromatography. The molecular weight of the protein was about 270 kDa. When PO was mixed with Gram-negative bacteria-derived lipopolysaccharide (LPS) at various ratios (10:1-1:10, w/w), the amount of residual LPS was reduced. PO at concentrations up to 200 µg/mL was not cytotoxic to HT-29 cells. The inflammatory response induced by LPS in HT-29 cells was regulated when the concentration of PO was increased. With increasing concentration of PO, production levels of pro-inflammatory cytokines, cytokines associated with hyperimmune responses such as IL4, IL-5, and INF-γ, and prostaglandin 2 (PGE2) were regulated. It was thought that simultaneous treatment with PO and LPS anti-inflammatory effects in HT-29 cells showed by regulating the ERK1/2-mediated NF-κB pathway. Results of this study suggest that H. discus hannai hemolymph is involved in the regulation of Gram-negative bacteria-related inflammatory immune responses in human colonic epithelial cells.


Assuntos
Gastrópodes , Monofenol Mono-Oxigenase , Animais , Humanos , Monofenol Mono-Oxigenase/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
4.
Heliyon ; 9(3): e14188, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938382

RESUMO

To understand the production and characteristics of protein hydrolysates pertaining to individual fish species, we selected and analyzed the most important commercial fish species according to the market value based on the Statistics on International Exports of Fishery Commodities by Food and Agriculture Organization. Accordingly, salmon, shrimp, cod, tuna, squid, and herring are marine species with high global value. Peptides obtained from their by-products were predominant in hydrophobic amino acids such as alanine, phenylalanine, methionine, proline, valine, tyrosine, tryptophan, leucine, and isoleucine. Bioactive peptides are short with a length of 2-20 amino acids. They remain inactive when they are within their parent proteins. Low molecular weight (0.3-8 kDa) peptides from hydrolyzed protein are easily digestible, readily absorbed by the body and are water-soluble. The hydrophobic nature contributes to their bioactivity, which facilitates their interactions with the membrane lipid bilayers. Incomplete hydrolysis results in low yields of hydrophobic amino acids. The glycosylation type of the resulting peptide fragment determines the different applications of the hydrolysate. The degree of conservation of the glycosidic residues and the size of the peptides are influenced by the method used to generate these hydrolysates. Therefore, it is crucial to explore inexpensive novel methodologies to generate bioactive peptides. According to the current studies, a unified approach (in silico estimation coupled with peptidomics) can be used for the identification of novel peptides with diverse physiological and technological functions. From an industrial perspective, the reusability of immobilized enzymes and membrane separation techniques (e.g., ultrafiltration) on marine by-products can offer low operating costs and higher yield for large-scale production of bioactive peptides. This review summarizes the production processes and essential characteristics of protein hydrolysates from fish by-products and presents the advances in their application.

5.
Microb Pathog ; 173(Pt A): 105857, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36397614

RESUMO

OBJECTIVE: We investigated the anti-inflammatory and anti-pathogenic activities of Lacticaseibacillus rhamnosus IDCC 3201 isolated from the feces of breast-fed infants. METHODS: Cell viability, nitric oxide (NO) production, and expression of inflammatory markers by L. rhamnosus IDCC 3201 were quantitatively analyzed in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. The antibacterial and antifungal activities of L. rhamnosus IDCC 3201 against various pathogens were also investigated. RESULTS: Treatment of LPS-induced macrophages with cell-free supernatant of L. rhamnosus IDCC 3201 significantly decreased the expression levels of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). Nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) levels also significantly decreased in LPS-induced macrophages. Phenotypically, the treatment of L. rhamnosus IDCC 3201 reduced the production of nitric oxide (NO) in LPS-induced macrophages. Furthermore, L. rhamnosus IDCC 3201 was proven to have potent inhibitory activities against various pathogens responsible for inflammatory responses in the gastrointestinal tract (i.e., Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, and Salmonella Typhimurium), respiratory system (i.e., Streptococcus pneumoniae), and vagina (i.e., Candida albicans). CONCLUSION: L. rhamnosus IDCC 3201 has anti-inflammatory activity in terms of decreased expression of cytokines, inflammation-inducible enzymes in LPS-induced macrophages, and anti-pathogenic activity.


Assuntos
Lacticaseibacillus rhamnosus , Lipopolissacarídeos , Lactente , Feminino , Humanos , Óxido Nítrico , Fezes , Anti-Inflamatórios/farmacologia , Fator de Necrose Tumoral alfa
6.
Food Sci Nutr ; 10(1): 67-74, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35035910

RESUMO

For applications of microorganisms as probiotics in the food industry, safety evaluation has increasingly become important to ensure the health of consumers. Although people have been using various lactic acid bacteria for different purposes, some studies have reported that certain lactic acid bacteria exhibit properties of virulence and produce toxic compounds. Thus, it is necessary to examine the characteristics associated with lactic acid bacteria that are safe for use as probiotics. This research aimed to assess the safety of Lactococcus lactis IDCC 2301 isolated from homemade cheese using in vitro and in vivo assays, including antibiotic resistance, hemolytic activity, toxin production, infectivity, and metabolic activity in immune-compromised animal species. The results demonstrated that the strain was susceptible to nine antibiotics suggested by the European Food Safety Authority (EFSA). Whole-genome analysis revealed that L. lactis IDCC 2301 neither has toxigenic genes nor harbors antibiotic resistance. Moreover, L. lactis IDCC 2301 showed neither hemolytic nor ß-glucuronidase activity. Furthermore, none of the D-lactate and biogenic amines were produced by L. lactis IDCC 2301. Finally, it was demonstrated that there was no toxicity and mortality using single-dose oral toxicity tests in rats. These results indicate that L. lactis IDCC 2301 can be safely used as probiotics for human consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...