Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(3): 1525-1532, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29261292

RESUMO

The disinfection of drinking water has been a major public health achievement. However, haloacetic acids (HAAs), generated as byproducts of water disinfection, are cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic. Previous studies of monoHAA-induced genotoxicity and cell stress demonstrated that the toxicity was due to inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to disruption of cellular metabolism and energy homeostasis. DiHAAs and triHAAs are also produced during water disinfection, and whether they share mechanisms of action with monoHAAs is unknown. In this study, we evaluated the effects of mono-, di-, and tri-HAAs on cellular GAPDH enzyme kinetics, cellular ATP levels, and pyruvate dehydrogenase complex (PDC) activity. Here, treatments conducted in Chinese hamster ovary (CHO) cells revealed differences among mono-, di-, and triHAAs in their molecular targets. The monoHAAs, iodoacetic acid and bromoacetic acid, were the strongest inhibitors of GAPDH and greatly reduced cellular ATP levels. Chloroacetic acid, diHAAs, and triHAAs were weaker inhibitors of GAPDH and some increased the levels of cellular ATP. HAAs also affected PDC activity, with most HAAs activating PDC. The primary finding of this work is that mono- versus multi-HAAs address different molecular targets, and the results are generally consistent with a model in which monoHAAs activate the PDC through GAPDH inhibition-mediated disruption in cellular metabolites, including altering ATP-to-ADP and NADH-to-NAD ratios. The monoHAA-mediated reduction in cellular metabolites results in accelerated PDC activity by way of metabolite-ratio-dependent PDC regulation. DiHAAs and triHAAs are weaker inhibitors of GAPDH, but many also increase cellular ATP levels, and we suggest that they increase PDC activity by inhibiting pyruvate dehydrogenase kinase.


Assuntos
Desinfecção , Oxirredutases , Animais , Células CHO , Cricetinae , Cricetulus , Piruvatos
2.
J Environ Sci (China) ; 58: 173-182, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28774606

RESUMO

The presence of iodinated X-ray contrast media (ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products (DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron, OH were treated with five different ICMs, including iopamidol, iopromide, iohexol, diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs (iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water.


Assuntos
Meios de Contraste/análise , Desinfetantes/análise , Água Potável/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Meios de Contraste/química , Desinfetantes/toxicidade , Desinfecção/métodos , Halogenação , Iohexol/análogos & derivados , Iohexol/análise , Iohexol/química , Iopamidol/análogos & derivados , Iopamidol/análise , Iopamidol/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Raios X
3.
Reprod Toxicol ; 62: 71-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27151372

RESUMO

Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25-1.00mM of CAA; 2-15µM of BAA or IAA) for 48 and 96h. Follicle growth was measured every 24h and the media were analyzed for estradiol levels at 96h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro.


Assuntos
Acetatos/toxicidade , Estradiol/metabolismo , Ácido Iodoacético/toxicidade , Folículo Ovariano/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Desinfecção , Feminino , Camundongos , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Purificação da Água
4.
Environ Sci Technol ; 49(23): 13749-59, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25942416

RESUMO

The introduction of drinking water disinfection greatly reduced waterborne diseases. However, the reaction between disinfectants and natural organic matter in the source water leads to an unintended consequence, the formation of drinking water disinfection byproducts (DBPs). The haloacetaldehydes (HALs) are the third largest group by weight of identified DBPs in drinking water. The primary objective of this study was to analyze the occurrence and comparative toxicity of the emerging HAL DBPs. A new HAL DBP, iodoacetaldehyde (IAL) was identified. This study provided the first systematic, quantitative comparison of HAL toxicity in Chinese hamster ovary cells. The rank order of HAL cytotoxicity is tribromoacetaldehyde (TBAL) ≈ chloroacetaldehyde (CAL) > dibromoacetaldehyde (DBAL) ≈ bromochloroacetaldehyde (BCAL) ≈ dibromochloroacetaldehyde (DBCAL) > IAL > bromoacetaldehyde (BAL) ≈ bromodichloroacetaldehyde (BDCAL) > dichloroacetaldehyde (DCAL) > trichloroacetaldehyde (TCAL). The HALs were highly cytotoxic compared to other DBP chemical classes. The rank order of HAL genotoxicity is DBAL > CAL ≈ DBCAL > TBAL ≈ BAL > BDCAL>BCAL ≈ DCAL>IAL. TCAL was not genotoxic. Because of their toxicity and abundance, further research is needed to investigate their mode of action to protect the public health and the environment.


Assuntos
Desinfetantes/análise , Desinfetantes/toxicidade , Água Potável/análise , Testes de Toxicidade/métodos , Acetaldeído/análogos & derivados , Acetaldeído/análise , Acetaldeído/química , Acetaldeído/toxicidade , Animais , Células CHO/efeitos dos fármacos , Cricetinae , Cricetulus , Dano ao DNA/efeitos dos fármacos , Desinfetantes/química , Desinfecção/métodos , Testes de Mutagenicidade/métodos , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Purificação da Água/métodos
5.
Environ Mol Mutagen ; 54(8): 629-37, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23893730

RESUMO

Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) >> chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN 2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs.


Assuntos
Acetatos/toxicidade , Dano ao DNA/efeitos dos fármacos , Desinfecção , Ácido Pirúvico/farmacologia , Poluentes Químicos da Água/toxicidade , Purificação da Água , Acetatos/química , Trifosfato de Adenosina/metabolismo , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Cricetinae , Cricetulus , Água Potável/química , Proteínas/metabolismo
6.
Environ Sci Technol ; 46(21): 12120-8, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22958121

RESUMO

The HIWATE (Health Impacts of long-term exposure to disinfection byproducts in drinking WATEr) project was a systematic analysis that combined the epidemiology on adverse pregnancy outcomes and other health effects with long-term exposure to low levels of drinking water disinfection byproducts (DBPs) in the European Union. The present study focused on the relationship of the occurrence and concentration of DBPs with in vitro mammalian cell toxicity. Eleven drinking water samples were collected from five European countries. Each sampling location corresponded with an epidemiological study for the HIWATE program. Over 90 DBPs were identified; the range in the number of DBPs and their levels reflected the diverse collection sites, different disinfection processes, and the different characteristics of the source waters. For each sampling site, chronic mammalian cell cytotoxicity correlated highly with the numbers of DBPs identified and the levels of DBP chemical classes. Although there was a clear difference in the genotoxic responses among the drinking waters, these data did not correlate as well with the chemical analyses. Thus, the agents responsible for the genomic DNA damage observed in the HIWATE samples may be due to unresolved associations of combinations of identified DBPs, unknown emerging DBPs that were not identified, or other toxic water contaminants. This study represents the first to integrate quantitative in vitro toxicological data with analytical chemistry and human epidemiologic outcomes for drinking water DBPs.


Assuntos
Desinfecção , Água Potável/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Dano ao DNA , Monitoramento Ambiental , Europa (Continente)/epidemiologia , Feminino , Humanos , Gravidez , Resultado da Gravidez/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...