Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 845, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987622

RESUMO

Adult Neural Stem Cells (aNSCs) in the ventricular-subventricular zone (V-SVZ) are largely quiescent. Here, we characterize the mechanism underlying the functional role of a cell-signalling inhibitory protein, LRIG1, in the control of aNSCs proliferation. Using Lrig1 knockout models, we show that Lrig1 ablation results in increased aNSCs proliferation with no change in neuronal progeny and that this hyperproliferation likely does not result solely from activation of the epidermal growth factor receptor (EGFR). Loss of LRIG1, however, also leads to impaired activation of transforming growth factor beta (TGFß) and bone morphogenic protein (BMP) signalling. Biochemically, we show that LRIG1 binds TGFß/BMP receptors and the TGFß1 ligand. Finally, we show that the consequences of these interactions are to facilitate SMAD phosphorylation. Collectively, these data suggest that unlike in embryonic NSCs where EGFR may be the primary mechanism of action, in aNSCs, LRIG1 and TGFß pathways function together to fulfill their inhibitory roles.


Assuntos
Proteínas Morfogenéticas Ósseas , Proliferação de Células , Glicoproteínas de Membrana , Células-Tronco Neurais , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Fator de Crescimento Transformador beta/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Camundongos Knockout , Células-Tronco Adultas/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Proteínas do Tecido Nervoso
2.
Cell Rep ; 33(2): 108257, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053360

RESUMO

Here, we ask how neural stem cells (NSCs) transition in the developing neocortex from a rapidly to a slowly proliferating state, a process required to maintain lifelong stem cell pools. We identify LRIG1, known to regulate receptor tyrosine kinase signaling in other cell types, as a negative regulator of cortical NSC proliferation. LRIG1 is expressed in murine cortical NSCs as they start to proliferate more slowly during embryogenesis and then peaks postnatally when they transition to give rise to a portion of adult NSCs. Constitutive or acute loss of Lrig1 in NSCs over this developmental time frame causes stem cell expansion due to increased proliferation. LRIG1 controls NSC proliferation by associating with and negatively regulating the epidermal growth factor receptor (EGFR). These data support a model in which LRIG1 dampens the stem cell response to EGFR ligands within the cortical environment to slow their proliferation as they transition to postnatal adult NSCs.


Assuntos
Receptores ErbB/metabolismo , Glicoproteínas de Membrana/metabolismo , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Proliferação de Células , Autorrenovação Celular , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Camundongos , Camundongos Knockout , Neurogênese
3.
Cell Rep ; 32(6): 108022, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783944

RESUMO

The transitions from developing to adult quiescent and activated neural stem cells (NSCs) are not well understood. Here, we use single-cell transcriptional profiling and lineage tracing to characterize these transitions in the murine forebrain. We show that the two forebrain NSC parental populations, embryonic cortex and ganglionic eminence radial precursors (RPs), are highly similar even though they make glutamatergic versus gabaergic neurons. Both RP populations progress linearly to transition from a highly active embryonic to a dormant adult stem cell state that still shares many similarities with embryonic RPs. When adult NSCs of either embryonic origin become reactivated to make gabaergic neurons, they acquire a developing ganglionic eminence RP-like identity. Thus, transitions from embryonic RPs to adult NSCs and back to neuronal progenitors do not involve fundamental changes in cell identity, but rather reflect conversions between activated and dormant NSC states that may be determined by the niche environment.


Assuntos
Células-Tronco Neurais/metabolismo , Neurogênese/genética , Prosencéfalo/fisiopatologia , Animais , Diferenciação Celular , Camundongos
4.
BMC Cell Biol ; 12: 24, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21627841

RESUMO

BACKGROUND: DYT1 dystonia is an autosomal dominant neurological condition caused by a mutation that removes a single glutamic acid residue (ΔE) from the torsinA (torA) AAA+ protein. TorA appears to possess a nuclear envelope (NE) localized activity that requires Lamina-Associated-Polypeptide 1 (LAP1), which is an inner nuclear membrane localized torA-binding partner. Although hypoactive, the DYT1 dystonia torA-ΔE isoform often concentrates in the NE, suggesting that torA-ΔE also interacts with an NE-localized binding partner. RESULTS: We confirm that NE-localized torA-ΔE does not co-immunoprecipitate with LAP1, and find that torA-ΔE continues to concentrate in the NE of cells that lack LAP1. Instead, we find that variability in torA-ΔE localization correlates with the presence of the SUN-domain and Nesprin proteins that assemble into the LINC complex. We also find that siRNA depletion of SUN1, but not other LINC complex components, removes torA-ΔE from the NE. In contrast, the LAP1-dependent NE-accumulation of an ATP-locked torA mutant is unaffected by loss of LINC complex proteins. This SUN1 dependent torA-ΔE localization requires the torA membrane association domain, as well as a putative substrate-interaction residue, Y147, neither of which are required for torA interaction with LAP1. We also find that mutation of these motifs, or depletion of SUN1, decreases the amount of torA-WT that colocalizes with NE markers, indicating that each also underlies a normal NE-localized torA binding interaction. CONCLUSIONS: These data suggest that the disease causing ΔE mutation promotes an association between torA and SUN1 that is distinct to the interaction between LAP1 and ATP-bound torA. This evidence for two NE-localized binding partners suggests that torA may act on multiple substrates and/or possesses regulatory co-factor partners. In addition, finding that the DYT1 mutation causes abnormal association with SUN1 implicates LINC complex dysfunction in DYT1 dystonia pathogenesis, and suggests a gain-of-function activity contributes to this dominantly inherited disease.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Chaperonas Moleculares/análise , Membrana Nuclear/metabolismo , Animais , Núcleo Celular/metabolismo , Distonia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Células NIH 3T3 , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...