Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(2): 1343-1351, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28004574

RESUMO

Surface wrinkles are commonly observed in large-scale of graphene films. As a new feature, the wrinkled surface of graphene films may directly affect bacterial viability by means of various interactions of bacterial cells with graphene sheets. In the present study, we introduce a wrinkled surface geometry of graphene oxide (GO) thin films for antibacterial application. Highly wrinkled GO films were formed by vacuum filtration of a GO suspension through a prestrained filter. Several types of wrinkled GO surfaces were obtained with different roughness grades determined by root-mean-square values. Antibacterial activity of the fabricated GO films toward three different bacterial species, Escherichia coli, Mycobacterium smegmatis, and Staphylococcus aureus, was evaluated in relation to surface roughness. Because of their nanoscopically corrugated nature, the wrinkled GO films exhibited excellent antibacterial properties. On the basis of our detailed observations, we propose a novel concept of the surrounded contact-based mechanism for antimicrobial activity of wrinkled GO films. It postulates formation of a mechanically robust GO surface "trap" that prompts interaction of bacteria with the diameter-matched GO sink, which results in substantial damages to the bacterial cell membrane. We believe that our approach uncovered a novel use of a promising two-dimensional material for highly effective antibacterial treatment.


Assuntos
Nanoestruturas , Antibacterianos , Escherichia coli , Grafite , Óxidos , Staphylococcus aureus
2.
Opt Express ; 24(13): 14152-8, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410573

RESUMO

We demonstrate an all-fiber Tm-doped soliton laser with high power by using a monolayer graphene saturable absorber (SA). Large area, uniform monolayer graphene was transferred to the surface of the side-polished fiber (SPF) to realize an in-line graphene SA that operates around 2 µm wavelength. To increase the nonlinear interaction with graphene, we applied an over-cladding onto the SPF, where enhanced optical absorption at monolayer graphene was observed. All-fiber Tm-doped mode-locked laser was built including our in-line graphene SA, which stably delivered the soliton pulses with 773 fs pulse duration. The measured 3-dB spectral bandwidth was 5.14 nm at the wavelength of 1910 nm. We obtained the maximum average output power of 115 mW at a repetition rate of 19.31 MHz. Corresponding pulse energy was estimated to be 6 nJ, which is the highest value among all-fiber Tm-doped soliton oscillators using carbon-material-based SAs.

3.
Appl Opt ; 54(2): 189-94, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25967616

RESUMO

We report the observation of transverse mode instability (TMI) in a pulsed single-frequency ytterbium-doped large-core fiber amplifier in which stimulated Brillouin scattering (SBS) is generated easily owing to the high peak power and narrow linewidth of the laser pulses. It was shown experimentally that the threshold of TMI is almost the same as that of SBS and that the suppression of SBS also increases the threshold of TMI, which indicates that the TMI originates from SBS in the fiber.

4.
Opt Express ; 22(19): 22667-72, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321735

RESUMO

We demonstrate a dissipative soliton fiber laser with high pulse energy (>30 nJ) based on a single-walled carbon nanotube saturable absorber (SWCNT-SA). In-line SA that evanescently interacts with the high quality SWCNT/polymer composite film was fabricated under optimized conditions, increasing the damage threshold of the saturation fluence of the SA to 97 mJ/cm(2). An Er-doped mode-locked all-fiber laser operating at net normal intra-cavity dispersion was built including the fabricated in-line SA. The laser stably delivers linearly chirped pulses with a pulse duration of 12.7 ps, and exhibits a spectral bandwidth of 12.1 nm at the central wavelength of 1563 nm. Average power of the laser output is measured as 335 mW at an applied pump power of 1.27 W. The corresponding pulse energy is estimated to be 34 nJ at the fundamental repetition rate of 9.80 MHz; this is the highest value, to our knowledge, reported in all-fiber Er-doped mode-locked laser using an SWCNT-SA.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Lasers de Estado Sólido , Luz , Nanotubos de Carbono/química , Desenho de Equipamento
5.
Nano Lett ; 12(2): 769-73, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22268958

RESUMO

Free induction decay of the coherent electronic transition and coherent phonon oscillations of the radial breathing mode in single-walled carbon nanotubes are simultaneously observed via direct resonant excitation of the lowest E(11) optical transition in the near-infrared region from 0.939 to 1.1 eV. We show that coherent electronic oscillations corresponding to the detuning of the probe energy from resonance can be exploited for the chirality assignment of carbon nanotubes, together with the robust assignment of the coherent lattice vibrations resonantly excited by femtosecond pulses. Excitation spectra show a large number of pronounced peaks that map out chirality distributions in great detail.


Assuntos
Elétrons , Nanotubos de Carbono/química , Fônons , Oscilometria
6.
Appl Opt ; 49(9): 1666-70, 2010 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-20300165

RESUMO

We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.

7.
Opt Express ; 16(7): 4866-71, 2008 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-18542585

RESUMO

We have developed a 5-W 756-nm injection-locked Ti:sapphire laser and frequency-doubled it in an external enhancement cavity for the generation of watt-level 378-nm single-frequency radiation, which is essential for isotope-selective optical pumping of thallium atoms. With a lithium triborate (LBO) crystal in the enhancement cavity, 1.1 W at 378 nm was coupled out from the cavity. Such results are to our knowledge the highest powers of continuous-wave single-frequency radiation generated from a Ti:sapphire laser and its frequency doubling.


Assuntos
Óxido de Alumínio , Desenho Assistido por Computador , Lasers , Modelos Teóricos , Titânio , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
8.
Appl Opt ; 44(36): 7810-3, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16381532

RESUMO

We have developed a 756 nm, 3 W single-frequency cw Ti:sapphire laser by using the technique of injection locking. A cw Ti:sapphire laser in a ring-type configuration was forced to lase unidirectionally by use of an optical diode to prevent a high-power backward laser from disturbing the injection laser. A master laser was amplified by a broad-area laser diode and coupled into a single-mode fiber to generate a 50 mW injection laser with a Gaussian beam profile, which was enough to lock the Ti:sapphire laser at full power of 3 W. Such a high-power single-frequency Ti:sapphire laser enables a watt-level blue or near-ultraviolet single-frequency laser to be generated by frequency doubling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...