Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892449

RESUMO

Modified mRNAs (modRNAs) are an emerging delivery method for gene therapy. The success of modRNA-based COVID-19 vaccines has demonstrated that modRNA is a safe and effective therapeutic tool. Moreover, modRNA has the potential to treat various human diseases, including cardiac dysfunction. Acute myocardial infarction (MI) is a major cardiac disorder that currently lacks curative treatment options, and MI is commonly accompanied by fibrosis and impaired cardiac function. Our group previously demonstrated that the matricellular protein CCN5 inhibits cardiac fibrosis (CF) and mitigates cardiac dysfunction. However, it remains unclear whether early intervention of CF under stress conditions is beneficial or more detrimental due to potential adverse effects such as left ventricular (LV) rupture. We hypothesized that CCN5 would alleviate the adverse effects of myocardial infarction (MI) through its anti-fibrotic properties under stress conditions. To induce the rapid expression of CCN5, ModRNA-CCN5 was synthesized and administrated directly into the myocardium in a mouse MI model. To evaluate CCN5 activity, we established two independent experimental schemes: (1) preventive intervention and (2) therapeutic intervention. Functional analyses, including echocardiography and magnetic resonance imaging (MRI), along with molecular assays, demonstrated that modRNA-mediated CCN5 gene transfer significantly attenuated cardiac fibrosis and improved cardiac function in both preventive and therapeutic models, without causing left ventricular rupture or any adverse cardiac remodeling. In conclusion, early intervention in CF by ModRNA-CCN5 gene transfer is an efficient and safe therapeutic modality for treating MI-induced heart failure.


Assuntos
Proteínas de Sinalização Intercelular CCN , Fibrose , Terapia Genética , Infarto do Miocárdio , RNA Mensageiro , Animais , Humanos , Masculino , Camundongos , Proteínas de Sinalização Intercelular CCN/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/terapia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Remodelação Ventricular/genética
2.
Methods Mol Biol ; 2803: 111-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676888

RESUMO

Myocardial ischemia-reperfusion injury (IRI) after myocardial ischemia, cardiac surgery, or circulatory arrest leads to adverse cardiovascular outcomes. Primarily, no blood flow to the heart causes an imbalance between oxygen demand and supply, namely, ischemia, resulting in damage or dysfunction of the cardiac tissue. Early restoration of blood flow has been established to be the treatment of choice to prevent further tissue injury. Indeed, the use of thrombolytic therapy or primary percutaneous coronary intervention is the most effective strategy for reducing the size of a myocardial infarct and improving the clinical outcome. Unfortunately, restoring blood flow to the ischemic myocardium, named reperfusion, can also contribute to injury. This phenomenon was therefore termed myocardial IRI. Subsequent studies in animal models of acute myocardial infarction suggest that myocardial IRI accounts for up to 50% of the final size of a myocardial infarct. Consequently, many researchers aim to understand the underlying molecular mechanism of myocardial IRI to find therapeutic strategies that ultimately reduce the final infarct size. Despite numerous therapeutic strategies identified in laboratories, no clinical medicine specifically targeting IRI has yet been approved. Therefore, more relevant research is needed to develop promising therapeutic agents. In this respect, we will introduce a solid and reproducible experimental protocol to induce myocardial IRI in mice and test potent drug transfer during this surgical procedure.


Assuntos
Modelos Animais de Doenças , Traumatismo por Reperfusão Miocárdica , Animais , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miocárdio/patologia
3.
Mol Ther Nucleic Acids ; 35(2): 102174, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38584818

RESUMO

Dystrophic cardiomyopathy is a significant feature of Duchenne muscular dystrophy (DMD). Increased cardiomyocyte cytosolic calcium (Ca2+) and interstitial fibrosis are major pathophysiological hallmarks that ultimately result in cardiac dysfunction. MicroRNA-25 (miR-25) has been identified as a suppressor of both sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) and mothers against decapentaplegic homolog-7 (Smad7) proteins. In this study, we created a gene transfer using an miR-25 tough decoy (TuD) RNA inhibitor delivered via recombinant adeno-associated virus serotype 9 (AAV9) to evaluate the effect of miR-25 inhibition on cardiac and skeletal muscle function in aged dystrophin/utrophin haploinsufficient mice mdx/utrn (+/-), a validated transgenic murine model of DMD. We found that the intravenous delivery of AAV9 miR-25 TuD resulted in strong and stable inhibition of cardiac miR-25 levels, together with the restoration of SERCA2a and Smad7 expression. This was associated with the amelioration of cardiomyocyte interstitial fibrosis as well as recovered cardiac function. Furthermore, the direct quadricep intramuscular injection of AAV9 miR-25 TuD significantly restored skeletal muscle Smad7 expression, reduced tissue fibrosis, and enhanced skeletal muscle performance in mdx/utrn (+/-) mice. These results imply that miR-25 TuD gene transfer may be a novel therapeutic approach to restore cardiomyocyte Ca2+ homeostasis and abrogate tissue fibrosis in DMD.

4.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569807

RESUMO

Cardiac hypertrophy is an adaptive response to various pathological insults, including hypertension. However, sustained hypertrophy can cause impaired calcium regulation, cardiac dysfunction, and remodeling, accompanied by cardiac fibrosis. Our previous study identified miR-25 as a regulator of SERCA2a, and found that the inhibition of miR-25 improved cardiac function and reduced fibrosis by restoring SERCA2a expression in a murine heart failure model. However, the precise mechanism underlying the reduction in fibrosis following miR-25 inhibition remains unclear. Therefore, we postulate that miR-25 may have additional targets that contribute to regulating cardiac fibrosis. Using in silico analysis, Krüppel-like factor 4 (KLF4) was identified as an additional target of miR-25. Further experiments confirmed that KLF4 was directly targeted by miR-25 and that its expression was reduced by long-term treatment with Angiotensin II, a major hypertrophic inducer. Subsequently, treatment with an miR-25 inhibitor alleviated the cardiac dysfunction, fibrosis, and inflammation induced by Angiotensin II (Ang II). These findings indicate that inhibiting miR-25 not only enhances calcium cycling and cardiac function via SERCA2a restoration but also reduces fibrosis by restoring KLF4 expression. Therefore, targeting miR-25 may be a promising therapeutic strategy for treating hypertensive heart diseases.


Assuntos
Cardiomiopatias , Hipertensão , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 4 Semelhante a Kruppel , Angiotensina II/metabolismo , Cálcio/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Fibrose , Hipertensão/metabolismo , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL
5.
Circulation ; 148(5): 405-425, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409482

RESUMO

BACKGROUND: Adeno-associated virus (AAV) has emerged as one of the best tools for cardiac gene delivery due to its cardiotropism, long-term expression, and safety. However, a significant challenge to its successful clinical use is preexisting neutralizing antibodies (NAbs), which bind to free AAVs, prevent efficient gene transduction, and reduce or negate therapeutic effects. Here we describe extracellular vesicle-encapsulated AAVs (EV-AAVs), secreted naturally by AAV-producing cells, as a superior cardiac gene delivery vector that delivers more genes and offers higher NAb resistance. METHODS: We developed a 2-step density-gradient ultracentrifugation method to isolate highly purified EV-AAVs. We compared the gene delivery and therapeutic efficacy of EV-AAVs with an equal titer of free AAVs in the presence of NAbs, both in vitro and in vivo. In addition, we investigated the mechanism of EV-AAV uptake in human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and mouse models in vivo using a combination of biochemical techniques, flow cytometry, and immunofluorescence imaging. RESULTS: Using cardiotropic AAV serotypes 6 and 9 and several reporter constructs, we demonstrated that EV-AAVs deliver significantly higher quantities of genes than AAVs in the presence of NAbs, both to human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and to mouse hearts in vivo. Intramyocardial delivery of EV-AAV9-sarcoplasmic reticulum calcium ATPase 2a to infarcted hearts in preimmunized mice significantly improved ejection fraction and fractional shortening compared with AAV9-sarcoplasmic reticulum calcium ATPase 2a delivery. These data validated NAb evasion by and therapeutic efficacy of EV-AAV9 vectors. Trafficking studies using human induced pluripotent stem cell-derived cells in vitro and mouse hearts in vivo showed significantly higher expression of EV-AAV6/9-delivered genes in cardiomyocytes compared with noncardiomyocytes, even with comparable cellular uptake. Using cellular subfraction analyses and pH-sensitive dyes, we discovered that EV-AAVs were internalized into acidic endosomal compartments of cardiomyocytes for releasing and acidifying AAVs for their nuclear uptake. CONCLUSIONS: Together, using 5 different in vitro and in vivo model systems, we demonstrate significantly higher potency and therapeutic efficacy of EV-AAV vectors compared with free AAVs in the presence of NAbs. These results establish the potential of EV-AAV vectors as a gene delivery tool to treat heart failure.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Dependovirus/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Vetores Genéticos , Células-Tronco Pluripotentes Induzidas/metabolismo , Anticorpos Neutralizantes , Vesículas Extracelulares/metabolismo
6.
PLoS One ; 17(8): e0269735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35917315

RESUMO

We previously showed that the matricellular protein CCN5 reverses established cardiac fibrosis (CF) through inducing apoptosis in myofibroblasts (MyoFBs) but not in cardiomyocytes or fibroblasts (FBs). In this study, we set out to elucidate the molecular mechanisms underlying CCN5-mediated selective apoptosis of MyoFBs. We first observed that the apoptotic protein p53 and the anti-apoptotic protein NFκB are simultaneously induced in MyoFBs. When the expression level of p53 was suppressed using a siRNA, CCN5 did not induce apoptosis in MyoFBs. By contrast, when NFκB signaling was inhibited using IKK VII, an IκB inhibitor, MyoFBs underwent apoptosis even in the absence of CCN5. SMAD7 is one of the downstream targets of CCN5 and it was previously shown to potentiate apoptosis in epithelial cells through inhibition of NFκB. In accordance with these reports, when the expression of SMAD7 was suppressed using a siRNA, NFκB signaling was enhanced, and CCN5 did not induce apoptosis. Lastly, we used a luciferase reporter construct to show that CCN5 positively regulated SMAD7 expression at the transcriptional level. Collectively, our data suggest that a delicate balance between the two mutually antagonistic proteins p53 and NFκB is maintained for MyoFBs to survive, and CCN5 tips the balance in favor of the apoptotic protein p53. This study provides insight into the anti-fibrotic activity of CCN5 during the regression of CF.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Miofibroblastos , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53 , Apoptose , Fibrose , Humanos , NF-kappa B , RNA Interferente Pequeno , Proteína Smad7/genética
7.
Methods Mol Biol ; 2573: 115-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040590

RESUMO

Cardiac gene therapy has been hampered by off-target expression of gene of interest irrespective of variety of delivery methods. To overcome this issue, cardiac-specific promoters provide target tissue specificity, although expression is often debilitated compared to that of ubiquitous promoters. We have previously shown that sarcolipin promoter with an enhancer calsequestrin cis-regulatory module 4 (CRM4) combination has an improved atrial specificity. Moreover, it showed a minimal extra-atrial expression, which is a significant advantage for AAV9-mediated cardiac gene therapy. Therefore, it can be a useful tool to study and treat atrial-specific diseases such as atrial fibrillation. In this chapter, we introduce practical and simple methodology for atrial-specific gene therapy using sarcolipin promoter with an enhancer CRM4.


Assuntos
Calsequestrina , Proteolipídeos , Calsequestrina/genética , Calsequestrina/metabolismo , Elementos Facilitadores Genéticos , Átrios do Coração/metabolismo , Proteínas Musculares/genética , Proteolipídeos/metabolismo
8.
Front Cardiovasc Med ; 9: 763544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557546

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration due to dystrophin gene mutations. Patients with DMD initially experience muscle weakness in their limbs during adolescence. With age, patients develop fatal respiratory and cardiac dysfunctions. During the later stages of the disease, severe cardiac fibrosis occurs, compromising cardiac function. Previously, our research showed that the matricellular protein CCN5 has antifibrotic properties. Therefore, we hypothesized that CCN5 gene transfer would ameliorate cardiac fibrosis and thus improve cardiac function in DMD-induced cardiomyopathy. We utilized mdx/utrn (±) haploinsufficient mice that recapitulated the DMD-disease phenotypes and used an adeno-associated virus serotype-9 viral vector for CCN5 gene transfer. We evaluated the onset of cardiac dysfunction using echocardiography and determined the experimental starting point in 13-month-old mice. Two months after CCN5 gene transfer, cardiac function was significantly enhanced, and cardiac fibrosis was ameliorated. Additionally, running performance was improved in CCN5 gene-transfected mice. Furthermore, in silico gene profiling analysis identified utrophin as a novel transcriptional target of CCN5. This was supplemented by a utrophin promoter assay and RNA-seq analysis, which confirmed that CCN5 was directly associated with utrophin expression. Our results showed that CCN5 may be a promising therapeutic molecule for DMD-induced cardiac and skeletal dysfunction.

9.
PLoS One ; 17(4): e0267629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476850

RESUMO

The matricellular protein CCN5 exerts anti-fibrotic activity in hearts partly by inducing reverse trans-differentiation of myofibroblasts (MyoFBs) to fibroblasts (FBs). CCN5 consists of three structural domains: an insulin-like growth factor binding protein (IGFBP), a von Willebrand factor type C (VWC), and a thrombospondin type 1 (TSP-1). In this study, we set out to elucidate the roles of these domains in the context of the reverse trans-differentiation of MyoFBs to FBs. First, human cardiac FBs were trans-differentiated to MyoFBs by treatment with TGF-ß; this was then reversed by treatment with recombinant human CCN5 protein or various recombinant proteins comprising individual or paired CCN5 domains. Subcellular localization of these recombinant proteins was analyzed by immunocytochemistry, cellular fractionation, and western blotting. Anti-fibrotic activity was also evaluated by examining expression of MyoFB-specific markers, α-SMA and fibronectin. Our data show that CCN5 is taken up by FBs and MyoFBs mainly via clathrin-mediated endocytosis, which is essential for the function of CCN5 during the reverse trans-differentiation of MyoFBs. Furthermore, we showed that the TSP-1 domain is essential and sufficient for endocytosis and nuclear localization of CCN5. However, the TSP-1 domain alone is not sufficient for the anti-fibrotic function of CCN5; either the IGFBP or VWC domain is needed in addition to the TSP-1 domain.


Assuntos
Trombospondina 1 , Trombospondinas , Fibrose , Humanos , Miofibroblastos , Proteínas Recombinantes/farmacologia , Trombospondina 1/genética
10.
Cardiovasc Res ; 118(15): 3140-3150, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191471

RESUMO

AIMS: A mutation in the phospholamban (PLN) gene, leading to deletion of Arg14 (R14del), has been associated with malignant arrhythmias and ventricular dilation. Identifying pre-symptomatic carriers with vulnerable myocardium is crucial because arrhythmia can result in sudden cardiac death, especially in young adults with PLN-R14del mutation. This study aimed at assessing the efficiency and efficacy of in vivo genome editing, using CRISPR/Cas9 and a cardiotropic adeno-associated virus-9 (AAV9), in improving cardiac function in young adult mice expressing the human PLN-R14del. METHODS AND RESULTS: Humanized mice were generated expressing human wild-type (hPLN-WT) or mutant (hPLN-R14del) PLN in the heterozygous state, mimicking human carriers. Cardiac magnetic resonance imaging at 12 weeks of age showed bi-ventricular dilation and increased stroke volume in mutant vs. WT mice, with no deficit in ejection fraction or cardiac output. Challenge of ex vivo hearts with isoproterenol and rapid pacing unmasked higher propensity for sustained ventricular tachycardia (VT) in hPLN-R14del relative to hPLN-WT. Specifically, the VT threshold was significantly reduced (20.3 ± 1.2 Hz in hPLN-R14del vs. 25.7 ± 1.3 Hz in WT, P < 0.01) reflecting higher arrhythmia burden. To inactivate the R14del allele, mice were tail-vein-injected with AAV9.CRISPR/Cas9/gRNA or AAV9 empty capsid (controls). CRISPR-Cas9 efficiency was evaluated by droplet digital polymerase chain reaction and NGS-based amplicon sequencing. In vivo gene editing significantly reduced end-diastolic and stroke volumes in hPLN-R14del CRISPR-treated mice compared to controls. Susceptibility to VT was also reduced, as the VT threshold was significantly increased relative to controls (30.9 ± 2.3 Hz vs. 21.3 ± 1.5 Hz; P < 0.01). CONCLUSIONS: This study is the first to show that disruption of hPLN-R14del allele by AAV9-CRISPR/Cas9 improves cardiac function and reduces VT susceptibility in humanized PLN-R14del mice, offering preclinical evidence for translatable approaches to therapeutically suppress the arrhythmogenic phenotype in human patients with PLN-R14del disease.


Assuntos
Cardiomiopatias , Edição de Genes , Humanos , Camundongos , Animais , Cardiomiopatias/genética , Cardiomiopatias/terapia
11.
Cells ; 10(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685684

RESUMO

Swift and continuous phagocytosis of apoptotic cells can be achieved by modulation of calcium flux in phagocytes. However, the molecular mechanism by which apoptotic cells modulate calcium flux in phagocytes is incompletely understood. Here, using biophysical, biochemical, pharmaceutical, and genetic approaches, we show that apoptotic cells induced the Orai1-STIM1 interaction, leading to store-operated calcium entry (SOCE) in phagocytes through the Mertk-phospholipase C (PLC) γ1-inositol 1,4,5-triphosphate receptor (IP3R) axis. Apoptotic cells induced calcium release from the endoplasmic reticulum, which led to the Orai1-STIM1 association and, consequently, SOCE in phagocytes. This association was attenuated by masking phosphatidylserine. In addition, the depletion of Mertk, which indirectly senses phosphatidylserine on apoptotic cells, reduced the phosphorylation levels of PLCγ1 and IP3R, resulting in attenuation of the Orai1-STIM1 interaction and inefficient SOCE upon apoptotic cell stimulation. Taken together, our observations uncover the mechanism of how phagocytes engulfing apoptotic cells elevate the calcium level.


Assuntos
Apoptose , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Fagócitos/citologia , Fagócitos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Endocitose , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fosfolipase C gama/metabolismo , Ligação Proteica , Células RAW 264.7 , Transdução de Sinais , c-Mer Tirosina Quinase/metabolismo
12.
Cells ; 10(6)2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067457

RESUMO

Tim-4 promotes the engulfment of apoptotic cells or exogenous particles by securing them on phagocytes. It is unable to transduce signals by itself but helps other engulfment receptors sense and internalize them. However, the identity of the engulfment receptors collaborating with Tim-4 is still incompletely understood. In this study, we searched for a candidate transmembrane protein with a FN3 domain, important for interaction with Tim-4, in silico and investigated whether it indeed interacts with Tim-4 and is involved in Tim-4-mediated phagocytosis. We found that EphA2 containing a FN3 domain in the extracellular region interacted with Tim-4, which was mediated by the IgV domain of Tim-4 and the FN3 domain of EphA2. Nevertheless, we found that EphA2 expression failed to alter Tim-4-mediated phagocytosis of apoptotic cells or polystyrene beads. Taken together, our findings suggest that EphA2, a new Tim-4 interacting protein, may intervene in a Tim-4-mediated cellular event even if it is not phagocytosis of endogenous or exogenous particles and vice versa.


Assuntos
Proteínas de Membrana/metabolismo , Fagocitose/fisiologia , Fosfatidilserinas/metabolismo , Receptor EphA2/metabolismo , Apoptose/fisiologia , Linhagem Celular , Humanos
13.
Circulation ; 144(6): 441-454, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34024116

RESUMO

BACKGROUND: Arginine (Arg) 14 deletion (R14del) in the calcium regulatory protein phospholamban (hPLNR14del) has been identified as a disease-causing mutation in patients with an inherited cardiomyopathy. Mechanisms underlying the early arrhythmogenic phenotype that predisposes carriers of this mutation to sudden death with no apparent structural remodeling remain unclear. METHODS: To address this, we performed high spatiotemporal resolution optical mapping of intact hearts from adult knock-in mice harboring the human PLNWT (wildtype [WT], n=12) or the heterozygous human PLNR14del mutation (R14del, n=12) before and after ex vivo challenge with isoproterenol and rapid pacing. RESULTS: Adverse electrophysiological remodeling was evident in the absence of significant structural or hemodynamic changes. R14del hearts exhibited increased arrhythmia susceptibility compared with wildtype. Underlying this susceptibility was preferential right ventricular action potential prolongation that was unresponsive to ß-adrenergic stimulation. A steep repolarization gradient at the left ventricular/right ventricular interface provided the substrate for interventricular activation delays and ultimately local conduction block during rapid pacing. This was followed by the initiation of macroreentrant circuits supporting the onset of ventricular tachycardia. Once sustained, these circuits evolved into high-frequency rotors, which in their majority were pinned to the right ventricle. These rotors exhibited unique spatiotemporal dynamics that promoted their increased stability in R14del compared with wildtype hearts. CONCLUSIONS: Our findings highlight the crucial role of primary electric remodeling caused by the hPLNR14del mutation. These inherently arrhythmogenic features form the substrate for adrenergic-mediated VT at early stages of PLNR14del induced cardiomyopathy.


Assuntos
Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/complicações , Cardiomiopatias/genética , Suscetibilidade a Doenças , Deleção de Sequência , Potenciais de Ação , Alelos , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Eletrocardiografia , Loci Gênicos , Predisposição Genética para Doença , Testes de Função Cardíaca , Humanos , Camundongos , Camundongos Transgênicos
14.
J Cell Mol Med ; 24(20): 11768-11778, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32885578

RESUMO

Atrial structural remodelling including atrial hypertrophy and fibrosis is a key mediator of atrial fibrillation (AF). We previously demonstrated that the matricellular protein CCN5 elicits anti-fibrotic and anti-hypertrophic effects in left ventricles under pressure overload. We here determined the utility of CCN5 in ameliorating adverse atrial remodelling and arrhythmias in a murine model of angiotensin II (AngII) infusion. Advanced atrial structural remodelling was induced by AngII infusion in control mice and mice overexpressing CCN5 either through transgenesis (CCN5 Tg) or AAV9-mediated gene transfer (AAV9-CCN5). The mRNA levels of pro-fibrotic and pro-inflammatory genes were markedly up-regulated by AngII infusion, which was significantly normalized by CCN5 overexpression. In vitro studies in isolated atrial fibroblasts demonstrated a marked reduction in AngII-induced fibroblast trans-differentiation in CCN5-treated atria. Moreover, while AngII increased the expression of phosphorylated CaMKII and ryanodine receptor 2 levels in HL-1 cells, these molecular features of AF were prevented by CCN5. Electrophysiological studies in ex vivo perfused hearts revealed a blunted susceptibility of the AAV9-CCN5-treated hearts to rapid atrial pacing-induced arrhythmias and concomitant reversal in AngII-induced atrial action potential prolongation. These data demonstrate the utility of a gene transfer approach targeting CCN5 for reversal of adverse atrial structural and electrophysiological remodelling.


Assuntos
Remodelamento Atrial , Fenômenos Eletrofisiológicos , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Angiotensina II , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Transdiferenciação Celular , Dependovirus/metabolismo , Fibrose , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia
15.
J Cell Mol Med ; 24(13): 7214-7227, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485073

RESUMO

Extracellular vesicles (EVs) have recently emerged as an important carrier for various genetic materials including microRNAs (miRs). Growing evidences suggested that several miRs transported by EVs were particularly involved in modulating cardiac function. However, it has remained unclear what miRs are enriched in EVs and play an important role in the pathological condition. Therefore, we established the miR expression profiles in EVs from murine normal and failing hearts and consecutively identified substantially altered miRs. In addition, we have performed bioinformatics approach to predict potential cardiac outcomes through the identification of miR targets. Conclusively, we observed approximately 63% of predicted targets were validated with previous reports. Notably, the predicted targets by this approach were often involved in both beneficial and malicious signalling pathways, which may reflect heterogeneous cellular origins of EVs in tissues. Lastly, there has been an active debate on U6 whether it is a proper control. Through further analysis of EV miR profiles, miR-676 was identified as a superior reference control due to its consistent and abundant expressions. In summary, our results contribute to identifying specific EV miRs for the potential therapeutic targets in heart failure and suggest that miR-676 as a new reference control for the EV miR studies.


Assuntos
Vesículas Extracelulares/genética , Perfilação da Expressão Gênica , Insuficiência Cardíaca/genética , MicroRNAs/genética , Animais , Regulação para Baixo/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteômica , Reprodutibilidade dos Testes , Regulação para Cima/genética
17.
J Mol Cell Cardiol ; 129: 58-68, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771307

RESUMO

The reduced expression of cardiac sarco-endoplasmic reticulum Ca2+ ATPase (SERCA2a) is a hallmark of heart failure. We previously showed that miR-25 is a crucial transcriptional regulator of SERCA2a in the heart. However, the precise mechanism of cardiac miR-25 regulation is largely unknown. Literatures suggested that miR-25 is regulated by the transcriptional co-factor, sine oculis homeobox homolog 1 (Six1), which in turn is epigenetically regulated by polycomb repressive complex 2 (PRC 2) in cardiac progenitor cells. Therefore, we aimed to investigate whether Six1 and PRC2 are indeed involved in the regulation of the miR-25 level in the setting of heart failure. Six1 was up-regulated in the failing hearts of humans and mice. Overexpression of Six1 led to adverse cardiac remodeling, whereas knock-down of Six1 attenuated pressure overload-induced cardiac dysfunction. The adverse effects of Six1 were ameliorated by knock-down of miR-25. The epigenetic repression on the Six1 promoter by PRC2 was significantly reduced in failing hearts. Epigenetic repression of Six1 is relieved through a reduction of PRC2 activity in heart failure. Six1 up-regulates miR-25, which is followed by reduction of cardiac SERCA2a expression. Collectively, these data showed that the PRC2-Six1-miR-25 signaling axis is involved in heart failure. Our finding introduces new insight into potential treatments of heart failure.


Assuntos
Insuficiência Cardíaca/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Transdução de Sinais , Animais , Epigênese Genética , Técnicas de Silenciamento de Genes , Insuficiência Cardíaca/fisiopatologia , Proteínas de Homeodomínio/genética , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Pressão , Regiões Promotoras Genéticas , Regulação para Cima/genética , Remodelação Ventricular/genética
18.
Circ Res ; 124(9): e63-e80, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30786847

RESUMO

RATIONALE: SERCA2a, sarco-endoplasmic reticulum Ca2+-ATPase, is a critical determinant of cardiac function. Reduced level and activity of SERCA2a are major features of heart failure. Accordingly, intensive efforts have been made to develop efficient modalities for SERCA2a activation. We showed that the activity of SERCA2a is enhanced by post-translational modification with SUMO1 (small ubiquitin-like modifier 1). However, the roles of other post-translational modifications on SERCA2a are still unknown. OBJECTIVE: In this study, we aim to assess the role of lysine acetylation on SERCA2a function and determine whether inhibition of lysine acetylation can improve cardiac function in the setting of heart failure. METHODS AND RESULTS: The acetylation of SERCA2a was significantly increased in failing hearts of humans, mice, and pigs, which is associated with the reduced level of SIRT1 (sirtuin 1), a class III histone deacetylase. Downregulation of SIRT1 increased the SERCA2a acetylation, which in turn led to SERCA2a dysfunction and cardiac defects at baseline. In contrast, pharmacological activation of SIRT1 reduced the SERCA2a acetylation, which was accompanied by recovery of SERCA2a function and cardiac defects in failing hearts. Lysine 492 (K492) was of critical importance for the regulation of SERCA2a activity via acetylation. Acetylation at K492 significantly reduced the SERCA2a activity, presumably through interfering with the binding of ATP to SERCA2a. In failing hearts, acetylation at K492 appeared to be mediated by p300 (histone acetyltransferase p300), a histone acetyltransferase. CONCLUSIONS: These results indicate that acetylation/deacetylation at K492, which is regulated by SIRT1 and p300, is critical for the regulation of SERCA2a activity in hearts. Pharmacological activation of SIRT1 can restore SERCA2a activity through deacetylation at K492. These findings might provide a novel strategy for the treatment of heart failure.


Assuntos
Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sirtuína 1/metabolismo , Acetilação , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteína p300 Associada a E1A/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Humanos , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Processamento de Proteína Pós-Traducional , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Sirtuína 1/genética , Suínos
19.
J Gene Med ; 20(12): e3060, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30393908

RESUMO

BACKGROUND: Cardiac gene therapy using the adeno-associated virus serotype 9 vector is widely used because of its efficient transduction. However, the promoters used to drive expression often cause off-target localization. To overcome this, studies have applied cardiac-specific promoters, although expression is debilitated compared to that of ubiquitous promoters. To address these issues in the context of atrial-specific gene expression, an enhancer calsequestrin cis-regulatory module 4 (CRM4) and the highly atrial-specific promoter sarcolipin were combined to enhance expression and minimize off tissue expression. METHODS: To observe expression and bio-distribution, constructs were generated using two different reporter genes: luciferase and enhanced green fluorescent protein (EGFP). The ubiquitous cytomegalovirus (CMV), sarcolipin (SLN) and CRM4 combined with sarcolipin (CRM4.SLN) were compared and analyzed using the luciferase assay, western blotting, a quantitative polymerase chain reaction and fluorescence imaging. RESULTS: The CMV promoter containing vectors showed the strongest expression in vitro and in vivo. However, the module SLN combination showed enhanced atrial expression and a minimized off-target effect even when compared with the individual SLN promoter. CONCLUSIONS: For gene therapy involving atrial gene transfer, the CRM4.SLN combination is a promising alternative to the use of the CMV promoter. CRM4.SLN had significant atrial expression and minimized extra-atrial expression.


Assuntos
Calsequestrina/genética , Regulação da Expressão Gênica , Átrios do Coração/metabolismo , Proteínas Musculares/genética , Regiões Promotoras Genéticas/genética , Proteolipídeos/genética , Animais , Calsequestrina/metabolismo , Citomegalovirus/genética , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , Transfecção
20.
Circ Res ; 123(6): 673-685, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30355233

RESUMO

RATIONALE: Abnormal SUMOylation has emerged as a characteristic of heart failure (HF) pathology. Previously, we found reduced SUMO1 (small ubiquitin-like modifier 1) expression and SERCA2a (sarcoplasmic reticulum Ca2+-ATPase) SUMOylation in human and animal HF models. SUMO1 gene delivery or small molecule activation of SUMOylation restored SERCA2a SUMOylation and cardiac function in HF models. Despite the critical role of SUMO1 in HF, the regulatory mechanisms underlying SUMO1 expression are largely unknown. OBJECTIVE: To examine miR-146a-mediated SUMO1 regulation and its consequent effects on cardiac morphology and function. METHODS AND RESULTS: In this study, miR-146a was identified as a SUMO1-targeting microRNA in the heart. A strong correlation was observed between miR-146a and SUMO1 expression in failing mouse and human hearts. miR-146a was manipulated in cardiomyocytes through AAV9 (adeno-associated virus serotype 9)-mediated gene delivery, and cardiac morphology and function were analyzed by echocardiography and hemodynamics. Overexpression of miR-146a reduced SUMO1 expression, SERCA2a SUMOylation, and cardiac contractility in vitro and in vivo. The effects of miR-146a inhibition on HF pathophysiology were examined by transducing a tough decoy of miR-146a into mice subjected to transverse aortic constriction. miR-146a inhibition improved cardiac contractile function and normalized SUMO1 expression. The regulatory mechanisms of miR-146a upregulation were elucidated by examining the major miR-146a-producing cell types and transfer mechanisms. Notably, transdifferentiation of fibroblasts triggered miR-146a overexpression and secretion through extracellular vesicles, and the extracellular vesicle-associated miR-146a transfer was identified as the causative mechanism of miR-146a upregulation in failing cardiomyocytes. Finally, extracellular vesicles isolated from failing hearts were shown to contain high levels of miR-146a and exerted negative effects on the SUMO1/SERCA2a signaling axis and hence cardiomyocyte contractility. CONCLUSIONS: Taken together, our results show that miR-146a is a novel regulator of the SUMOylation machinery in the heart, which can be targeted for therapeutic intervention.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Proteína SUMO-1/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Comunicação Celular , Transdiferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Fibroblastos/metabolismo , Fibroblastos/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos , MicroRNAs/genética , Miócitos Cardíacos/patologia , Proteína SUMO-1/genética , Transdução de Sinais , Sumoilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...