Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21297, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042836

RESUMO

Aerosol jet printing (AJP) is a new non-contact direct writing technique designed to achieve precise and intricate patterns on various substrates. Specifically, the pneumatic AJP process breaks down the ink into fine particles, significantly reducing the risk of nozzle clogging and rendering it highly advantageous for industrial applications. This paper focuses on the optimization of the line electrode formation process using soluble silver clusters as the conductive ink, along with the aerosol formation procedure. The main parameters of the AJP process, namely sheath flow rate, atomizer flow rate, and dispensing speed, were identified and examined for their influence on line width and resistivity. Through this analysis, an operability window, including optimized conditions for printing high-quality lines using the AJP process, was established, along with a regression equation enabling the statistical estimation of line width. In summary, the outcomes of this investigation underscore the feasibility of an integrated printing system capable of precision control over line width, achieved through the optimization of AJP process parameters. Furthermore, it was established that pneumatic AJP offers robust process stability. The practical applicability of the proposed optimization techniques was assessed, highlighting their potential utilization in electrode formation processes within the electronic and display industry.

2.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615941

RESUMO

The roll-to-roll (R2R) continuous patterning of silver nanowire-polyvinylpyrrolidone (Ag NW-PVP) composite transparent conductive film (cTCF) is demonstrated in this work by means of slot-die coating followed by selective calendering. The Ag NWs were synthesized by the polyol method, and adequately washed to leave an appropriate amount of PVP to act as a capping agent and dispersant. The as-coated Ag NW-PVP composite film had low electronic conductivity due to the lack of percolation path, which was greatly improved by the calendering process. Moreover, the dispersion of Ag NWs was analyzed with addition of PVP in terms of density and molecular weight. The excellent dispersion led to uniform distribution of Ag NWs in a cTCF. The continuous patterning was conducted using an embossed pattern roll to perform selective calendering. To evaluate the capability of the calendering process, various line widths and spacing patterns were investigated. The minimum pattern dimensions achievable were determined to be a line width of 0.1 mm and a line spacing of 1 mm. Finally, continuous patterning using selective calendering was applied to the fabrication of a flexible heater and a resistive touch sensing panel as flexible electronic devices to demonstrate its versatility.

3.
Nanotechnology ; 27(39): 395602, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27561319

RESUMO

SiOx structures with different diameters of a few hundreds of nanometers and/or a few micrometers are prepared using applied thermal evaporation. Subsequently, Sn quantum dot-based SiOx architectures are synthesized via the continuous steps of the carbothermal reduction of SnO2, substitution of Sn(4+) for In(3+), thermal oxidation of Si, Sn sublimation, interfacial reaction, and diffusion reaction consistent with corresponding phase equilibriums. Several crystalline and spherical-shaped Sn quantum dots with diameters between 2 and 7 nm are observed in the amorphous SiOx structures. The morphological evolution, including hollow Sn (or SnOx) sphere and wire-like, worm-like, tube-like, and flower-like SiOx, occurs stepwise on the Si substrate upon increasing the given process energies. The optical characteristics based on confocal measurements reveal the as-synthesized SiOx structures, irrespective of whether crystallinity is formed, which all have visible-range emissions originating from the numerous different-sized and -shaped Sn quantum dots permeating into the SiOx matrix. In addition, photoluminescence emissions ranging between ultraviolet and red regions are in agreement with confocal measurements. The origins of the morphology- and luminescence-controlled amorphous SiOx with Sn quantum dots are also discussed.

4.
Sci Rep ; 6: 30901, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27477760

RESUMO

Balloon whisk-like and flower-like SiOx tubes with well-dispersed Sn and joining countless SiOx loops together induce intense luminescence characteristics in substrate materials. Our synthetic technique called "direct substrate growth" is based on pre-contamination of the surroundings without the intended catalyst and source powders. The kind of supporting material and pressure of the inlet gases determine a series of differently functionalized tube loops, i.e., the number, length, thickness, and cylindrical profile. SiOx tube loops commonly twist and split to best suppress the total energy. Photoluminescence and confocal laser measurements based on quantum confinement effect of the embedded Sn nanoparticles in the SiOx tube found substantially intense emissions throughout the visible range. These new concepts related to the synthetic approach, pre-pollution, transitional morphology, and permeable nanoparticles should facilitate progress in nanoscience with regard to tuning the dimensions of micro-/nanostructure preparations and the functionalization of customized applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...