Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116799, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805969

RESUMO

BACKGROUND: The overstoring of surplus calories in mature adipocytes causes obesity and abnormal metabolic activity. The anti-obesity effect of a Celosia cristata (CC) total flower extract was assessed in vitro, using 3T3-L1 pre-adipocytes and mouse adipose-derived stem cells (ADSCs), and in vivo, using high-fat diet (HFD)-treated C57BL/6 male mice. METHODS: CC extract was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs. After differentiation, lipid droplets were assessed by oil red O staining, adipogenesis and lipolytic factors were evaluated, and intracellular triglyceride and glycerol concentrations were analyzed. For in vivo experiments, histomorphological analysis, mRNA expression levels of adipogenic and lipolytic factors in adipose tissue, blood plasma analysis, metabolic profiles were investigated. RESULTS: CC treatment significantly prevented adipocyte differentiation and lipid droplet accumulation, reducing adipogenesis-related factors and increasing lipolysis-related factors. Consequently, the intracellular triacylglycerol content was diminished, whereas the glycerol concentration in the cell supernatant increased. Mice fed an HFD supplemented with the CC extract exhibited decreased HFD-induced weight gain with metabolic abnormalities such as intrahepatic lipid accumulation and adipocyte hypertrophy. Improved glucose utilization and insulin sensitivity were observed, accompanied by the amelioration of metabolic disturbances, including alterations in liver enzymes and lipid profiles, in CC-treated mice. Moreover, the CC extract helped restore the disrupted energy metabolism induced by the HFD, based on a metabolic animal monitoring system. CONCLUSION: This study suggests that CC total flower extract is a potential natural herbal supplement for the prevention and management of obesity.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Fármacos Antiobesidade , Celosia , Dieta Hiperlipídica , Flores , Camundongos Endogâmicos C57BL , Obesidade , Extratos Vegetais , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Masculino , Camundongos , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/isolamento & purificação , Flores/química , Adipogenia/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Celosia/química , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
2.
Biomed Pharmacother ; 176: 116762, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788597

RESUMO

Obesity is a multifaceted medical condition characterized by the pathological accumulation of excessive lipids in the body. We investigated the effects of morroniside, a bioactive compound derived from Cornus officinalis, on adipogenesis. We used a preadipocyte 3T3-L1 stable cell line and primary cultured adipose-derived stem cells (ADSCs) in vitro and ovariectomized (OVX) and a high-fat diet (HFD)-fed obese mouse model in vivo. Preadipocyte 3T3-L1 cells and ADSCs incubated with morroniside during adipocyte differentiation and obese mice subjected to OVX and HFD received oral morroniside treatment for 12 weeks. Morroniside treatment significantly reduced adipocyte differentiation and fatty acid accumulation and downregulated adipogenesis-related gene expression, concomitant with a decrease in triglyceride content and an increase in glycerol release in cells. The results of the in vivo study showed that morroniside ameliorated obesity-related phenotypes by reducing body weight gain, hepatic steatosis, and adipose tissue in obese mice. These findings suggest that morroniside is a promising compound for preventing and treating obesity.


Assuntos
Células 3T3-L1 , Adipogenia , Fármacos Antiobesidade , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade , Animais , Camundongos , Adipogenia/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fármacos Antiobesidade/farmacologia , Feminino , Dieta Hiperlipídica/efeitos adversos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Glicosídeos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Camundongos Obesos , Triglicerídeos/metabolismo , Ovariectomia , Fígado Gorduroso/tratamento farmacológico
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902181

RESUMO

Obesity is characterized by the excessive accumulation of mature adipocytes that store surplus energy in the form of lipids. In this study, we investigated the inhibitory effects of loganin on adipogenesis in mouse preadipocyte 3T3-L1 cells and primary cultured adipose-derived stem cells (ADSCs) in vitro and in mice with ovariectomy (OVX)- and high-fat diet (HFD)-induced obesity in vivo. For an in vitro study, loganin was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs, lipid droplets were evaluated by oil red O staining, and adipogenesis-related factors were assessed by qRT-PCR. For in vivo studies, mouse models of OVX- and HFD-induced obesity were orally administered with loganin, body weight was measured, and hepatic steatosis and development of excessive fat were evaluated by histological analysis. Loganin treatment reduced adipocyte differentiation by accumulating lipid droplets through the downregulation of adipogenesis-related factors, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), perilipin 2 (Plin2), fatty acid synthase (Fasn), and sterol regulatory element binding transcription protein 1 (Srebp1). Loganin administration prevented weight gain in mouse models of obesity induced by OVX and HFD. Further, loganin inhibited metabolic abnormalities, such as hepatic steatosis and adipocyte enlargement, and increased the serum levels of leptin and insulin in both OVX- and HFD-induced obesity models. These results suggest that loganin is a potential candidate for preventing and treating obesity.


Assuntos
Adipogenia , Fármacos Antiobesidade , Iridoides , Animais , Camundongos , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , PPAR gama/metabolismo , Aumento de Peso , Iridoides/farmacologia
4.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36670908

RESUMO

Osteoarthritis (OA) is the progressive destruction of articular cartilage with severe symptoms, including pain and stiffness. We investigated the anti-osteoarthritic effects of Prunella vulgaris (PV) and Gentiana lutea (GL) extract in primary cultured chondrocytes RAW 264.7 cells in vitro and destabilization of the medial meniscus (DMM)-induced OA mice in vivo. Primary chondrocytes were induced with IL-1ß, and RAW 264.7 cells were treated with LPS and co-incubated with either individual extracts of PV and GL or different ratios of PV and GL mixture. For the OA animal model, the medial meniscus (DMM) was destabilized in 9-week-old male C57BL/6 mice. Treatment of individual PV and GL and combination of PV and GL extracts inhibited the mRNA expression level of COX2 in chondrocytes and RAW 264.7 cells. The optimized inhibitory effect was attained with a PV and GL combination at an 8:2 ratio (PG) without cytotoxic effects. PG extracts prevented the expression of catabolic factors (COX2, Mmp3, Mmp9, and Mmp13) and inflammatory mediator levels (PGE2 and collagenase). In addition, PG decreased subchondral sclerosis and increased BMD in the subchondral region of DMM-induced OA mice with protection of articular cartilage destruction by inhibiting inflammatory processes. This study suggests that PG may be an alternative medicinal herb for treatment of OA.

5.
Animals (Basel) ; 11(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34827919

RESUMO

Medicinal plants are widely used as supplements for the treatment of various diseases because of their few side-effects. Here, we examined the anti-obesity effects of a mixture extract of Cornus officinalis and Ribes fasciculatum (CR) in high-fat diet (HFD)-induced obese male mice. Four week old male C57BL/6J mice were fed a normal diet (ND) or 60% high-fat diet (HFD) with different concentrations of CR extracts (75, 150, and 300 mg/kg/day) by oral administration for 12 weeks. CR extract administration prevented HFD-induced weight gain, hepatic steatosis, and adipocyte enlargement through the downregulation of adipogenesis-associated genes in obese male mice. In addition, CR administration improved the impaired glucose metabolism, insulin action, biochemical obesity parameters, and metabolic profiles in HFD-induced male mice. Consequently, the CR extract exhibited beneficial effects on HFD-induced systemic metabolic challenges. Taken together, our findings suggest that CR extract may be a potent therapeutic supplement for the treatment and prevention of obesity.

6.
Molecules ; 26(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916785

RESUMO

Nordihydroguaiaretic acid (NDGA) is a major lignan metabolite found in Larrea spp., which are widely used in South America to treat various diseases. In breast tissue, estradiol is metabolized to the catechol estrogens such as 4-hydroxyestradiol (4-OHE2), which have been proposed to be cancer initiators potentially involved in mammary carcinogenesis. Catechol-O-methyltransferase (COMT) catalyzes the O-methylation of catechol estrogens to their less toxic methoxy derivatives, such as 4-O-methylestradiol (4-MeOE2). The present study investigated the novel biological activities of NDGA in relation to COMT and the effects of COMT inhibition by NDGA on 4-OHE2-induced cyto- and genotoxicity in MCF-7 human breast cancer cells. Two methoxylated metabolites of NDGA, 3-O-methylNDGA (3-MNDGA) and 4-O-methyl NDGA (4-MNDGA), were identified in the reaction mixture containing human recombinant COMT, NDGA, and cofactors. Km values for the COMT-catalyzed metabolism of NDGA were 2.6 µM and 2.2 µM for 3-MNDGA and 4-MNDGA, respectively. The COMT-catalyzed methylation of 4-OHE2 was inhibited by NDGA at an IC50 of 22.4 µM in a mixed-type mode of inhibition by double reciprocal plot analysis. Molecular docking studies predicted that NDGA would adopt a stable conformation at the COMT active site, mainly owing to the hydrogen bond network. NDGA is likely both a substrate for and an inhibitor of COMT. Comet and apurinic/apyrimidinic site quantitation assays, cell death, and apoptosis in MCF-7 cells showed that NDGA decreased COMT-mediated formation of 4-MeOE2 and increased 4-OHE2-induced DNA damage and cytotoxicity. Thus, NDGA has the potential to reduce COMT activity in mammary tissues and prevent the inactivation of mutagenic estradiol metabolites, thereby increasing catechol estrogen-induced genotoxicities.


Assuntos
Inibidores de Catecol O-Metiltransferase/química , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Estrogênios de Catecol/metabolismo , Masoprocol/metabolismo , Masoprocol/farmacologia , Mutagênicos/toxicidade , Sítios de Ligação , Morte Celular/efeitos dos fármacos , Dano ao DNA , Estrogênios de Catecol/química , Estrogênios de Catecol/farmacologia , Humanos , Células MCF-7 , Masoprocol/química , Metilação , Simulação de Acoplamento Molecular , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/efeitos dos fármacos
7.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567513

RESUMO

Arthritis is a common inflammatory disease that causes pain, stiffness, and joint swelling. Here, we investigated the ameliorative effects of loganin on arthritis in vitro and in vivo. A single bioactive compound was fractionated and isolated from Cornus officinalis (CO) extract to screen for anti-arthritic effects. A single component, loganin, was identified as a candidate. The CO extract and loganin inhibited the expression of factors associated with cartilage degradation, such as cyclooxygenase-2 (COX-2), matrix metalloproteinase 3 (MMP-3), and matrix metalloproteinase 13 (MMP-13), in interukin-1 beta (IL-1ß)-induced chondrocyte inflammation. In addition, prostaglandin and collagenase levels were reduced following treatment of IL-1ß-induced chondrocytes with loganin. In the destabilization of the medial meniscus (DMM)-induced mouse model, loganin administration attenuated cartilage degeneration by inhibiting COX-2, MMP-3, and MMP-13. Transverse micro-CT images revealed that loganin reduced DMM-induced osteophyte formation. These results indicate that loganin has protective effects in DMM-induced mice.

8.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379387

RESUMO

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


Assuntos
Iridoides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose/patologia , Substâncias Protetoras/farmacologia , Administração Oral , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Gentiana/química , Iridoides/administração & dosagem , Iridoides/química , Iridoides/isolamento & purificação , Camundongos , Osteoblastos/patologia , Osteoclastos/patologia , Ovariectomia , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Espectroscopia de Prótons por Ressonância Magnética
9.
Plants (Basel) ; 9(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872183

RESUMO

Osteoporosis is a porous bone disease caused by bone density loss, which increases the risk of fractures. Cornus officinalis (CO) and Achyranthes japonica (AJ) have been used as traditional herbal medicine for various disorders in East Asia. Although the anti-osteoporotic effects of single extract of CO and AJ have already been reported, the synergistic effect of a combined mixture has not been studied. In this study, we investigated the effects of a CO and AJ herbal mixture on osteoporosis in in vitro and in vivo models. The results demonstrate that treatment with the CO and AJ mixture significantly promoted osteoblast differentiation of MC3T3-E1 mouse preosteoblasts through the upregulation of osteoblastic differentiation-associated genes such as alkaline phosphatase (Alpl), runt-related transcription factor 2 (Runx2), and bone gamma-carboxyglutamic acid-containing protein (Bglap), while the mixture significantly inhibited differentiation of osteoclasts isolated from primary-cultured mouse monocytes. In addition, oral administration of CO and AJ mixture significantly prevented bone mineral density loss and trabecular bone structures in an ovariectomy-induced osteoporotic mouse model. These results suggest that the combination treatment of CO and AJ mixture might be a beneficial therapy for osteoporosis.

10.
Molecules ; 25(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443487

RESUMO

Medicinal plants have been used worldwide as primary alternative healthcare supplements. Cornus officinalis (CO) and Ribes fasciculatum (RF) are traditional medicinal plants applied in East Asia to treat human diseases such as hepatitis, osteoporosis, oxidative stress and allergy. The aim of this study was to examine the anti-obesity effect of CO and RF on preadipocyte 3T3-L1 cells in vitro and high-fat diet (HFD)-induced obesity mice in vivo. Combination treatment of CO and RF in differentiated 3T3-L1 cells inhibited adipocyte differentiation through downregulation of adipogenesis-associated genes such as CCAAT/enhancer-binding protein alpha (Cebpa), fatty acid binding protein 4 (Fabp4), peroxisome proliferator-activated receptor gamma (Pparg) and sterol regulatory element binding protein (Srebp1). In vivo animal models showed that a mixture of CO and RF inhibited HFD-induced weight gain, resulting in decreased abdominal visceral fat tissues and fatty hepatocyte deposition. In addition, CO+RF treatment decreased HFD-induced adipogenesis-associated genes in abdominal white fat tissue. These results suggest that administration of a CO and RF mixture prevented adipocyte differentiation and lipid accumulation in preadipocyte cells and HFD-induced body weight in obesity mice. Therefore, combined therapy of CO and RF may be a protective therapeutic agent against obesity.


Assuntos
Adipogenia/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Cornus/química , PPAR gama/genética , Ribes/química , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
11.
Phytother Res ; 34(6): 1347-1357, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31908073

RESUMO

Prunus cerasoides (PC) products contain relatively high levels of flavones and isoflavones and may be potential sources of phytoestrogens for postmenopausal symptom relief. We assessed the PC extract (PCE) and its representative constituents in vitro with assays for estrogen receptor alpha binding, estrogen response element transcriptional activity, cell proliferation, and gene expression changes for pS2 in MCF-7 cells. PCE and its compounds showed strong estrogen receptor binding affinities and estrogen response element induction. A previously undescribed compound (designated as compound 18), now identified as being gentisic acid, 5-O-ß-D-(6'-O-trans-4-coumaroyl)-glucopyranoside, also showed potent estrogenic properties and induced proliferation of MCF-7 cells. PCE was evaluated for its in vivo uterotrophic effects in immature female rats as well as for its lipid lowering effects in estrogen-deprived animals. For ovariectomized rats and aged female mice, PCE-treated groups had lower plasma triglyceride levels compared with control and, for the same comparison, had reduced serum levels of liver stress/damage markers. Our results point to strong estrogenic activities and beneficial metabolic effects for PCE, with properties that put PC and its extracts as promising sources of phytoestrogens for symptom relief in menopausal and postmenopausal cases.


Assuntos
Estrogênios/uso terapêutico , Extratos Vegetais/química , Prunus/química , Animais , Modelos Animais de Doenças , Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7/metabolismo , Camundongos , Roedores
12.
J Agric Food Chem ; 67(31): 8649-8659, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283213

RESUMO

Spent coffee grounds (SCG) are the most abundant coffee byproduct and are generally discarded as waste. The horticultural use of SCG and SCG compost (SCGC) has become popular due to a growing interest in environmentally friendly measures for waste disposal. Estrogen-like endocrine disrupting chemicals in the soil can be absorbed by plants and subsequently by humans who consume these plants. The objectives of this study are to determine the phytochemical profiles of extracts of SCG and SCGC and to evaluate the estrogen-like activities of SCG, SCGC, and the major coffee phenolic acids, specifically, 5-O-caffeoylquinic acid (CQA), caffeic acid, and ferulic acid. Their inductive effects on estrogen receptor (ER)-mediated gene transcription have been examined in cultured cell lines. CQA was the most abundant phenolic acid in SCG and SCGC and was further examined for its ER-mediated estrogen-like activity using various assays. This is the first study to report the estrogen-like signaling activities of coffee byproducts and their major constituents.


Assuntos
Coffea/química , Hidroxibenzoatos/metabolismo , Fitoestrógenos/metabolismo , Extratos Vegetais/metabolismo , Receptores de Estrogênio/genética , Ativação Transcricional , Resíduos/análise , Animais , Ácidos Cafeicos/análise , Ácidos Cafeicos/metabolismo , Linhagem Celular , Compostagem , Feminino , Genes Reporter , Humanos , Hidroxibenzoatos/química , Fitoestrógenos/química , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/metabolismo , Sementes/química
13.
J Med Food ; 22(2): 186-195, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30585749

RESUMO

Phytoestrogens possess beneficial effects in the management of menopausal symptoms with few side effects. Soybeans are major natural sources of isoflavones, with high estrogen receptor (ER)-ß selectivity. The objective of this study therefore was to develop a solvent-mediated extraction method for soybean germinated embryos (SGEs) and to investigate the biological activities of the extract. Ethanolic extraction yielded the SGE extract (SGEE), which had a unique composition of biologically active aglycones and soyasaponins. SGEE showed a proliferative effect in MCF7 cells and ERß-selective transcriptional activities in human embryonic kidney cells. In addition, oral administration of SGEE to ovariectomized rats resulted in the induction of ERß and estrogen-responsive genes in the uterus and a decrease in tail skin temperature and uterus weight. Our data suggest that germination and ethanolic extraction are effective measures for producing isoflavone-rich food supplements, which may be useful as alternative menopausal hormone therapy.


Assuntos
Receptor beta de Estrogênio/metabolismo , Glycine max/química , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Pele/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Temperatura Corporal , Feminino , Germinação , Humanos , Células MCF-7 , Menopausa , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Fitoestrógenos/farmacologia , Fitoterapia , Ratos Sprague-Dawley , Sementes , Cauda , Útero/metabolismo
14.
Int J Mol Sci ; 19(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380747

RESUMO

Opuntia ficus indica (OFI) is grown abundantly in arid areas and its fruits are regarded as an important food and nutrient source owing to the presence of flavonoids, minerals, and proteins. The previous report that OFI exerts phytoestrogenic activity makes it plausible for OFI-containing supplements to be used as alternative estrogen replacement therapy. In the case of polypharmacy with the consumption of OFI-containing botanicals in post- or peri-menopausal women, it is critical to determine the potential drug-OFI interaction due to the modulation of drug metabolism. In the present study, the modulating effects on the hepatic drug metabolizing enzymes (DMEs) by OFI and its flavonoid constituents (kaempferol, quercetin, isorhamnetin, and their glycosidic forms) were investigated using the liver microsomal fractions prepared from ovariectomized (OVX) rats, human liver microsomes, and human hepatocarcinoma cell line (HepG2). As a result, the oral administration of extracts of OFI (OFIE) in OVX rats induced hepatic CYP2B1, CYP3A1, and UGT2B1. OFIE, hydrolyzed (hdl) OFIE, and several flavonols induced the transcriptional activities of both CYP2B6 and CYP3A4 genes in HepG2 cells. Finally, OFIE did not inhibit activities of cytochrome P450 (CYPs) or uridine diphosphate (UDP)-glucuronosyltransferases (UGTs), whereas hdl OFIE or flavonol treatment inhibited CYP1A2 and CYP3A1/3A4 in rat and human liver microsomes. Our data demonstrate that OFIE may induce or inhibit certain types of DMEs and indicate that drug-OFI interaction may occur when the substrate or inhibitor drugs of specific CYPs or UGTs are taken concomitantly with OFI-containing products.


Assuntos
Indutores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides/farmacologia , Glucuronosiltransferase , Opuntia/química , Extratos Vegetais/farmacologia , Animais , Indutores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/química , Feminino , Flavonoides/química , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Células Hep G2 , Humanos , Microssomos Hepáticos/enzimologia , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
15.
Molecules ; 23(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949932

RESUMO

Sakuranetin (SKN), found in cherry trees and rice, is a flavanone with various pharmacological activities. It is biosynthesized from naringenin in rice or cherry trees, and the metabolism of SKN has been studied in non-human species. The present study aimed to investigate the metabolic pathways of SKN in human liver microsomes and identify the phase I and phase II metabolites, as well as evaluate the potential for drug⁻herb interactions through the modulation of drug metabolizing enzymes (DMEs). HPLC-DAD and HPLC-electrospray mass spectrometry were used to study the metabolic stability and identify the metabolites from human liver microsomes incubated with SKN. The potential of SKN to inhibit the DMEs was evaluated by monitoring the formation of a DME-specific product. The cytochrome P450 2B6 and 3A4-inductive effects were studied using promoter reporter assays in human hepatocarcinoma cells. The major pathways for SKN metabolism include B-ring hydroxylation, 5-O-demethylation, and conjugation with glutathione or glucuronic acid. The phase I metabolites were identified as naringenin and eriodictyol. SKN was found to be a UDP-glucuronosyltransferases (UGT) 1A9 inhibitor, whereas it induced transactivation of the human pregnane X receptor-mediated cytochrome P450 (CYP) 3A4 gene.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides/metabolismo , Glucuronosiltransferase/metabolismo , Fígado/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Metaboloma , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Receptor de Pregnano X , Regiões Promotoras Genéticas/genética , Receptores de Esteroides/metabolismo , Ativação Transcricional/genética , Uridina Difosfato Ácido Glucurônico/metabolismo
16.
Phytother Res ; 31(1): 140-151, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28058783

RESUMO

Larrea nitida Cav. (LNC), which belongs to the family Zygophyllaceae, is widely indigenous and used in South America to treat various pathological conditions. It contains the antioxidant and antiinflammatory but toxic nordihydroguaiaretic acid (NDGA) as well as O-methylated metabolite of NDGA (MNDGA) as bioactive compounds. The hepatic metabolism-based toxicological potential of extracts of LNC (LNE), NDGA, and MNDGA has not previously been reported. The present study aimed to characterize the phase I and phase II hepatic metabolism and reactive intermediates of LNE, NDGA, and MNDGA and their effects on the major drug-metabolizing enzymes in vitro and ex vivo. A methanol extract of LNC collected from Chile as well as NDGA and MNDGA isolated from LNE were subjected to metabolic stability assays in liver microsomes in the presence of the cofactors reduced nicotinamide dinucleotide phosphate (NADPH) and/or uridine 5'-diphosphoglucuronic acid (UDPGA). Cytochrome P450 (CYP) inhibition assays were performed using CYP isozyme-specific model substrates to examine the inhibitory activities of LNE, NDGA, and MNDGA, which were expressed as % inhibition and IC50 values. Ex vivo CYP induction potential was investigated in the liver microsomes prepared from the rats intraperitoneally administered with LNE. Glutathione (GSH) adduct formation was monitored by LC-MS3 analysis of the microsomal incubation samples with either NDGA or MNDGA and an excess of GSH to determine the formation of electrophilic reactive intermediates. Both NDGA and MNDGA were stable to NADPH-dependent phase I metabolism, but labile to glucuronide conjugation. LNE, NDGA, and MNDGA showed significant inhibitory effects on CYP1A2, 2C9, 2D6, and/or 3A4, with IC50 values in the micromolar range. LNE was found to be a CYP1A2 inducer in ex vivo rat experiments, and mono- and di-GSH adducts of both NDGA and MNDGA were identified by LC-MS3 analysis. Our study suggests that hepatic clearance is the major elimination route for the lignans NDGA and MNDGA present in LNE. These lignans may possess the ability to modify biomacromolecules via producing reactive intermediates. In addition, LNE, NDGA, and MNDGA are found to be inhibitors for various CYP isozymes such as CYP2C9 and 3A4. Thus, the consumption of LNC as an herbal preparation or NDGA may cause metabolism-driven herb-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Larrea/química , Lignanas/química , Fígado/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Animais , Feminino , Interações Ervas-Drogas , Humanos , Lignanas/farmacologia , Ratos
17.
Phytother Res ; 30(6): 971-80, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26989859

RESUMO

Phytoestrogens are selective estrogen receptor modulators (SERMs) with potential for use in hormone replacement therapy (HRT) to relieve peri/postmenopausal symptoms. This study was aimed at elucidating the molecular mechanisms underlying the SERM properties of the extract of Korean-grown Opuntia ficus-indica (KOFI). The KOFI extract induced estrogen response element (ERE)-driven transcription in breast and endometrial cancer cell lines and the expression of endogenous estrogen-responsive genes in breast cancer cells. The flavonoid content of different KOFI preparations affected ERE-luciferase activities, implying that the flavonoid composition likely mediated the estrogenic activities in cells. Oral administration of KOFI decreased the weight gain and levels of both serum glucose and triglyceride in ovariectomized (OVX) rats. Finally, KOFI had an inhibitory effect on the 17ß-estradiol-induced proliferation of the endometrial epithelium in OVX rats. Our data demonstrate that KOFI exhibited SERM activity with no uterotrophic side effects. Therefore, KOFI alone or in combination with other botanical supplements, vitamins, or minerals may be an effective and safe alternative active ingredient to HRTs, for the management of postmenopausal symptoms. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Opuntia/química , Receptores de Estrogênio/química , Animais , Feminino , Humanos , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...