Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(28): 33721-33731, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37395597

RESUMO

This study proposes the possibility of employing metal iodates as novel gas-sensing materials synthesized using a facile chemical precipitation method. An extensive survey of a library of metal iodates reveals that cobalt, nickel, and copper iodates are useful for gas sensor applications. Material analysis conducted using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravity differential temperature analysis, and Raman spectroscopy enables us to understand the thermal behavior and optimize post-annealing conditions. The evaluation of the gas-sensing performance of the specified metal iodates indicates that all of them display p-type sensing behavior and exhibit a high gas response toward different gases: a gas response of 18.6 by cobalt iodate to 1.8 ppm of acetone, a gas response of 4.3 by nickel iodate to 1 ppm of NO2, and a gas response of 6.6 by copper iodate to 1.8 ppm of H2S. Further investigation of the temperature-programmed reduction of H2 and polarization-electric field hysteresis analyses elucidates that the high gas response originates from the inherent characteristics of metal iodates, such as the high oxygen-reduction ability of iodine, highlighting the potential of the iodates as novel gas-sensing materials.

2.
Adv Sci (Weinh) ; 10(3): e2205328, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36424141

RESUMO

Lithium (Li) is the "holy grail" for satisfying the increasing energy demand. This is because of its high theoretical capacity and low potential. Although Li is considered as a potential anode material, dendritic Li growth and the limited electrochemical properties continue to hinder its practical application. Structure-based self lithium ion (Li+ ) concentrating electrodes with high capacity and uniform Li+ -flux are recommended to overcome these shortcomings of Li. However, recent studies have been limited to structural perspectives. In addition, the electrokinetic principle of electrode materials remains a challenge. Herein, the space-confinement-based strategy is suggested for condensed Li+ -flux control in nanoscaled slit spaces that induce the dense Li growth on an anodeless electrode by using the stratified carbon pack (SCP). The micro/mesoporous slits of the SCP concentrate the electric field, which is strengthened by the space-confined electric field focusing, resulting in the accumulation of Li+ -flux in the host. The accumulated Li+ in host sites enables a uniform Li deposition with high capacity at high current density stably. Furthermore, SCPs have great compatibility with LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) cathode, representing the outstanding full cell performance with Li deposited electrode which show the high specific of 115 mAh g-1 at 4 C during 350 cycles.

3.
ACS Appl Mater Interfaces ; 14(45): 51487-51495, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36326902

RESUMO

A popular substance in the MXene family, titanium carbide (Ti3C2Tx), has received substantial attention mainly due to its high metallic conductivity, easy solution processability, and environment friendliness. However, the poor oxygen resistance nature of MXene has prevented its practical applications from being realized. Despite significant attempts to improve the oxidative stability of MXenes, a comprehensive understanding of the oxidation mechanism is still elusive, thus leaving an optimal strategy for recycling oxidized MXene in question. Here, by developing a facile hydrofluoric acid (HF) post-treatment, we have unraveled the regeneration kinetics of the oxidized Ti3C2Tx. A systematic and extensive investigation using a combination of Raman spectroscopy, scanning electron microscopy, X-ray diffractometer, and X-ray photoelectron spectroscopy revealed that HF post-treatment is critical for restoring the structure/morphology and surface composition of MXene nanosheets. These are ascribed to the oxidizing agent removal kinetics, while the generation of amorphous carbon and Ti(III) in fluorinated derivatives provides efficient electrical conductivity. Our findings suggested that HF post-treatment is sufficient to evade and reduce the degradation process while maintaining the conductivity for a longer time, which will not only be economically advantageous but also a step forward for the rational design of Ti3C2Tx-based devices and functional coatings.

4.
Nanomaterials (Basel) ; 12(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080084

RESUMO

A composite of Mo2C nanoparticles dispersed onto a nitrogen and sulfur co-doped carbon scaffold (Mo2C/N,S-C) was prepared by a simple and environmentally friendly method of one-pot annealing of MoCl5, urea, and lignosulfonate under a N2 atmosphere at 700 °C. Lignosulfonate, a by-product of the sulfite pulping process, was employed as a feedstock to fabricate the S-doped carbon scaffold and carbide simultaneously, and urea acted as a nitrogen source for N-doping to carbon. The as-prepared Mo2C/N,S-C catalyst showed high performance for the hydrogen evolution reaction (HER), with a small overpotential of 105 mV at 10 mAcm-2, and good stability for 3000 cycles. The improved HER performance of the Mo2C/N,S-C originated from the interplay between the highly active Mo2C nanoparticles and the N,S co-doped carbon scaffold with its high electrical conductivity and large surface area. Furthermore, N,S co-doping to carbon improved the hydrophilicity of the catalyst surface, thus further enhancing the HER activity.

5.
Nano Converg ; 7(1): 36, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33191443

RESUMO

Water is a significant natural resource for humans. As such, wastewater containing heavy metals is seen as a grave problem for the environment. Currently, adsorption is one of the common methods used for both water purification and wastewater treatment. Adsorption relies on the physical and chemical interactions between heavy metal ions and adsorbents. Adsorptive membranes (AMs) have demonstrated high effectiveness in heavy metal removal from wastewater owing to their exclusive structural properties. This article examines the applications of adsorptive membranes such as polymeric membranes (PMs), polymer-ceramic membranes (PCMs), electrospinning nanofiber membranes (ENMs), and nano-enhanced membranes (NEMs), which demonstrate high selectivity and adsorption capacity for heavy metal ions, as well as both advantages and disadvantages of each one all, are summarized and compared shortly. Moreover, the general theories for both adsorption isotherms and adsorption kinetics are described briefly to comprehend the adsorption process. This work will be valuable to readers in understanding the current applications of various AMs and their mechanisms in heavy metal ion adsorption, as well as the recycling methods in heavy ions desorption process are summarized and described clearly. Besides, the influences of morphological and chemical structures of AMs are presented and described in detail as well.

6.
Small ; 16(34): e2001756, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32715633

RESUMO

Hybrid energy storage systems have shown great promise for many applications; however, achieving high energy and power densities with long cycle stability remains a major challenge. Here, a strategy to synthesize high-tap density anode and cathode structures that yield ultrahigh performance in hybrid energy storage is reported. First, vinyl acetate monomers are polymerized into molecular sizes via chain reactions controlled by the surface free radicals of graphene and metals. Subsequently, molecular-size polymers are thermally evaporated to construct battery-type anode structures with encapsulated tin metals for high-capacity and stratified graphene pliable pockets (GPPs) for fast charge transfer. Similarly, sulfur particles are attached to GPPs via monomeric polymerization, and capacitor-type hollow GPP (H@GPP) cathode structures are produced by evaporating sulfur, where sublimated S particles yield mesopores for rapid anion movement and micropores for high capacity. Moreover, hybrid full-cell devices with high-tap density anodes and cathodes show high gravimetric energy densities of up to 206.9 Wh kg-1 , exceeding those of capacitors by ≈16-fold, and excellent volumetric energy densities of up to 92.7 Wh L-1 . Additionally, they attain high power densities of up to 23 678 W kg-1 , outperforming conventional devices by a factor of ≈100, and long cycle stability over 10 000 cycles.

7.
J Phys Chem Lett ; 11(5): 1896-1902, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32069406

RESUMO

Developing electrocatalysts that are stable and efficient for CO2 reduction is important for constructing a carbon-neutral energy cycle. New approaches are required to drive input electricity toward the desired CO2 reduction reaction (CO2RR) rather than the competitive hydrogen evolution reaction (HER). In this study, we have used quantum mechanics to demonstrate that the space confinement formed in the gaps of adjacent gold or silver nanoparticles can be used to improve the Faradaic efficiency of CO2RR to CO. This behavior is due to the space confinement stabilizing *COOH, which is the key intermediate in the CO2RR. However, space confinement has almost no effect on *H, which is the key intermediate in the HER. Possible experimental approaches for the preparation of this type of gold or silver electrocatalyst have been proposed.

8.
Materials (Basel) ; 13(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952283

RESUMO

We investigated the flash light sintering process to effectively reduce electrical resistance in silver nanowire networks. The optimum condition of the flash light sintering process reduces the electrical resistance by ~20%, while the effect of the conventional thermal annealing processes is rather limited for silver nanowire networks. After flash light sintering, the morphology of the junction between the silver nanowires changes to a mixed-phase structure of the two individual nanowires. This facile and fast process for silver nanowire welding could be highly advantageous to the mass production of silver nanowire networks.

9.
Adv Sci (Weinh) ; 8(1): 2002144, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437575

RESUMO

Lithium (Li) metal has attracted significant attention as next-generation anode material owing to its high theoretical specific capacity and low potential. For enabling the practical application of Li-metal as an anode according to energy demands, suppressing dendrite growth by controlling the Li-ion (Li+) is crucial. In this study, metal-organic frameworks comprising bipyridinic nitrogen linker (M-bpyN) are proposed as 3-dimensional (3D) Li guiding matrix. The proposed approach creates ordered electronegative functional sites that enable the preoccupied Li+ in the ordered bipyridine sites to produce isotropic Li growth. The Li guiding matrix containing 3D ordered bipyridinic N sites introduces preoccupied Li+ sites that attract the Li growth direction, thereby suppressing the dendrite growth during the electrodeposition of Li. After applying the M-bpyN layers, stable lifespan of up to 900 cycles in the Li|M-bpyN|Cu cell and over 1500 h of operation in the Li|M-bpyN|Li symmetric cell is achieved. Moreover, the Li|M-bpyN|LiFePO4 configuration shows a long cycle retention of 350 cycles at 0.5 C. These results indicate that an M-bpyN Li guiding matrix, which enables a uniform Li+ flux by 3D ordered Li+-chelating sites, serve as a suitable host for Li+ and enhance the performance of Li-metal electrodes.

10.
Sci Rep ; 9(1): 5779, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962494

RESUMO

Zeolitic imidazolate framework-302 (ZIF-302)-embedded cellulose acetate (CA) membranes for osmotic driven membrane process (ODMPs) were fabricated using the phase inversion method. We investigated the effects of different fractions of ZIF-302 in the CA membrane to understand their influence on ODMPs performance. Osmotic water transport was evaluated using different draw solution concentrations to investigate the effects of ZIF-302 contents on the performance parameters. CA/ZIF-302 membranes showed fouling resistance to sodium alginate by a decreased water flux decline and increased recovery ratio in the pressure retarded osmosis (PRO) mode. Results show that the hydrothermally stable ZIF-302-embedded CA/ZIF-302 composite membrane is expected to be durable in water and alginate-fouling conditions.

11.
Nanomaterials (Basel) ; 8(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949908

RESUMO

Carbon nanotubes are frequently selected for supercapacitors because of their major intrinsic properties of mechanical and chemical stability, in addition to their excellent electrical conductivity. However, electrodes using carbon nanotubes suffer from severe performance degradation by the phenomenon of re-stacking during fabrication, which hinders ion accessibility. In this study, short single-wall carbon nanotubes were further shortened by sonication-induced cutting to increase the proportion of edge sites. This longitudinally short structure preferentially exposes the active edge sites, leading to high capacitance during operation. Supercapacitors assembled using the shorter-cut nanotubes exhibit a 7-fold higher capacitance than those with pristine single-wall nanotubes while preserving other intrinsic properties of carbon nanotubes, including excellent cycle performance and rate capability. The unique structure suggests a design approach for achieving a high specific capacitance with those low-dimensional carbon materials that suffer from re-stacking during device fabrication.

12.
J Am Chem Soc ; 137(49): 15394-7, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26595681

RESUMO

A series of three-dimensional (3D) extended metal catecholates (M-CATs) was synthesized by combining the appropriate metal salt and the hexatopic catecholate linker, H6THO (THO(6-) = triphenylene-2,3,6,7,10,11-hexakis(olate)) to give Fe(THO)·Fe(SO4) (DMA)3, Fe-CAT-5, Ti(THO)·(DMA)2, Ti-CAT-5, and V(THO)·(DMA)2, V-CAT-5 (where DMA = dimethylammonium). Their structures are based on the srs topology and are either a 2-fold interpenetrated (Fe-CAT-5 and Ti-CAT-5) or noninterpenetrated (V-CAT-5) porous anionic framework. These examples are among the first catecholate-based 3D frameworks. The single crystal X-ray diffraction structure of the Fe-CAT-5 shows bound sulfate ligands with DMA guests residing in the pores as counterions, and thus ideally suited for proton conductivity. Accordingly, Fe-CAT-5 exhibits ultrahigh proton conductivity (5.0 × 10(-2) S cm(-1)) at 98% relative humidity (RH) and 25 °C. The coexistence of sulfate and DMA ions within the pores play an important role in proton conductivity as also evidenced by the lower conductivity values found for Ti-CAT-5 (8.2 × 10(-4) S cm(-1) at 98% RH and 25 °C), whose structure only contained DMA guests.

13.
Proc Natl Acad Sci U S A ; 112(26): 7914-9, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080421

RESUMO

Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core-shell structures (Ni:Li2O), whereas subsequent delithiation causes Ni:Li2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni(2+) of the nanocrystal changes during lithiation-delithiation through Ni(0) and back to Ni(2+). These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles.

14.
ACS Nano ; 8(7): 7451-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24999543

RESUMO

The high porosity of metal-organic frameworks (MOFs) has been used to achieve exceptional gas adsorptive properties but as yet remains largely unexplored for electrochemical energy storage devices. This study shows that MOFs made as nanocrystals (nMOFs) can be doped with graphene and successfully incorporated into devices to function as supercapacitors. A series of 23 different nMOFs with multiple organic functionalities and metal ions, differing pore sizes and shapes, discrete and infinite metal oxide backbones, large and small nanocrystals, and a variety of structure types have been prepared and examined. Several members of this series give high capacitance; in particular, a zirconium MOF exhibits exceptionally high capacitance. It has the stack and areal capacitance of 0.64 and 5.09 mF cm(-2), about 6 times that of the supercapacitors made from the benchmark commercial activated carbon materials and a performance that is preserved over at least 10000 charge/discharge cycles.

15.
Nanoscale ; 6(12): 6526-30, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24842695

RESUMO

We report that ammonia borane with a high uptake capacity for hydrogen can be encapsulated in a metal-organic framework (MOF) via capillary action, where the MOF functions as a chemical guide to control the hydrogen desorption pathways of ammonia borane by releasing only pure hydrogen, lowering its hydrogen desorption temperature, and suppressing its volumetric expansion during hydrogen desorption.

16.
Nano Lett ; 12(5): 2283-8, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22452675

RESUMO

The increasing demands on high performance energy storage systems have raised a new class of devices, so-called lithium ion capacitors (LICs). As its name says, LIC is an intermediate system between lithium ion batteries and supercapacitors, designed for taking advantages of both types of energy storage systems. Herein, as a quest to improve the Li storage capability compared to that of other existing carbon nanomaterials, we have developed extrinsically defective multiwall carbon nanotubes by nitrogen-doping. Nitrogen-doped carbon nanotubes contain wall defects through which lithium ions can diffuse so as to occupy a large portion of the interwall space as storage regions. Furthermore, when integrated with 3 nm nickel oxide nanoparticles for a further capacity boost, nitrogen doping enables unprecedented cell performance by engaging anomalous electrochemical phenomena such as nanoparticles division into even smaller ones, their agglomeration-free diffusion between nitrogen-doped sites as well as capacity rise with cycles. The final cells exhibit a capacity as high as 3500 mAh/g, a cycle life of greater than 10,000 times, and a discharge rate capability of 1.5 min while retaining a capacity of 350 mAh/g.

17.
Nano Lett ; 11(6): 2472-7, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21595452

RESUMO

Although various carbon nanomaterials including activated carbon, carbon nanotubes, and graphene have been successfully demonstrated for high-performance ultracapacitors, their capacitances need to be improved further for wider and more challenging applications. Herein, using nitrogen-doped graphene produced by a simple plasma process, we developed ultracapacitors whose capacitances (∼280 F/g(electrode)) are about 4 times larger than those of pristine graphene based counterparts without sacrificing other essential and useful properties for ultracapacitor operations including excellent cycle life (>200,000), high power capability, and compatibility with flexible substrates. While we were trying to understand the improved capacitance using scanning photoemission microscopy with a capability of probing local nitrogen-carbon bonding configurations within a single sheet of graphene, we observed interesting microscopic features of N-configurations: N-doped sites even at basal planes, distinctive distributions of N-configurations between edges and basal planes, and their distinctive evolutions with plasma duration. The local N-configuration mappings during plasma treatment, alongside binding energy calculated by density functional theory, revealed that the origin of the improved capacitance is a certain N-configuration at basal planes.


Assuntos
Grafite/química , Nitrogênio/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...