Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(5): 2632-2640, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35425326

RESUMO

Cu2O/CuO heterostructure is a well-known strategy to improve the performance of Cu2O photocathodes for photoelectrochemical (PEC) water splitting. The CuO thickness in the Cu2O/CuO heterostructure is considered as a critical factor affecting the PEC performance because it is highly related to the light utilization and charge separation/transport. In this study, the Cu2O/CuO photocathode tailoring the CuO thickness was investigated to examine the CuO thickness influence on the PEC performance. Cu2O/CuO photocathodes were prepared by the electrodeposition and subsequent thermal annealing process and the Cu2O/CuO heterostructure was controlled by the annealing temperature and time. It was demonstrated that the increased CuO thickness enhances the light absorption in the long wavelength region and improves the charge separation by the reinforced band bending. However, the thick CuO hinders the efficient charge transport in the Cu2O/CuO heterostructure, resulting in the decreased PEC performance. Therefore, it is necessary to optimize the CuO thickness for the enhanced PEC performance of Cu2O/CuO photocathodes. Consequently, the Cu2O/CuO photocathode consisting of the similar CuO thickness with its minority carrier diffusion length (∼90 nm) was fabricated by annealing at 350 °C for 20 min, and it shows the optimal PEC performance (-1.2 mA cm-2 at 0 V vs. RHE) in pH 6.5 aqueous solution, resulting from the enhanced light utilization and the reinforced band bending.

2.
Front Chem ; 9: 781838, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966721

RESUMO

Nickel phosphide (Ni-P) films as a catalytic cathode for the hydrogen evolution reaction (HER) of a water splitting were fabricated by a pulse-reverse electrodeposition technique. The electrochemical behaviors for the electrodeposition of Ni-P were investigated by the characterization of peaks in a cyclic voltammogram. The composition of the electrodeposited Ni-P alloys was controlled by adjusting duty cycles of the pulse-reverse electrodeposition. The HER electrocatalytic properties of the Ni-P electrodeposits with an amorphous phase as a function of phosphorous contents existing in Ni-P were electrochemically characterized by the analysis of overpotentials, Tafel slopes, and electrochemical impedance spectrometry. Additionally, the elemental Ni-embedded crystalline Ni3P was prepared by an annealing process with the amorphous Ni69P31 electrodeposit with high contents of phosphorus. The crystalline structure with Ni inclusions in the matrix of Ni3P was formed by the precipitation of excess Ni. The electrocatalytic properties of crystalline Ni3P with elemental Ni inclusions were also investigated by electrochemical characterization.

3.
J Nanosci Nanotechnol ; 21(9): 4680-4684, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691851

RESUMO

Flexible triboelectric nanogenerators (TENGs) have attracted much attention because of its environmentally friendly, practical, and cost-producing advantages. In flexible TENGs, it is important to study the flexible electrodes in order to fabricate the fully flexible devices. Here, we compared electrical characteristics of the sponge porous polydimethylsiloxane (PDMS)-based flexible TENGs with two types of flexible electrodes, copper and carbon nanotube (CNT)-PDMS electrodes. The output voltage and maximum power density of sponge PDMS-based flexible TENGs with copper and CNTPDMS electrodes were compared. The voltage and power density of sponge PDMS-based flexible TENGs with CNT-PDMS electrodes were improved compare to those with copper electrodes. The output voltage and the maximum power density of sponge PDMS-based flexible TENGs with copper and CNT-PDMS electrodes increased 4 times and 7 times, respectively. It is attributed to higher electrical conductivity and stably flow electricity of CNT than those of copper.

4.
Polymers (Basel) ; 11(9)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484316

RESUMO

A comparative study of the electrical performance of triboelectric nanogenerators (TENGs) with plain- and 2/1 twill-woven cotton textiles was conducted. Furthermore, the microstructures of the cotton fiber surfaces were examined to understand the fundamental mechanical interaction among the cotton fibers in the TENGs. The TENG with 2/1 twill-woven cotton textiles exhibited higher output voltages compared to that with plain-woven cotton textiles. The difference in the output voltage between the two types of TENGs resulted from the difference in triboelectric charge generation between the constituent cotton textiles. The higher output voltage of the TENG with 2/1 twill-woven cotton textiles was attributed to the higher density in triboelectric interactions among the cotton fiber molecules.

5.
J Nanosci Nanotechnol ; 19(8): 4638-4642, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913760

RESUMO

We demonstrate the preparation of water-dispersible polyaniline:polystyrene sulfonate (PANI:PSS), which was doped with camphorsulfonic acid (CSA) and co-doped with poly (4-styrenesulfonic acid) (PSS). The proper formation of the PANI and PANI:PSS was verified by FTIR measurements. The synthesized samples were further characterized via UV-vis spectroscopy. The intensive study on the current density (J)-voltage (V) characteristics within the temperature range (143-303 K) of the synthesized sample was performed systematically. The electrical study shows that the doping of PANI with CSA as a dopant and PSS as a co-dopant significantly improves the overall semi-conducting property of PANI. The detailed analysis of the current density (J)-voltage (V) curve at various temperatures reveals the electrical conduction behavior, which follows the trap-dependent space-charge limited conduction (SCLC) mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...