Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 149: 107504, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850783

RESUMO

The notable characteristics of recently emerged Antibody-Drug Conjugates (ADCs) encompass the targeting of Human Epidermal growth factor Receptor 2 (HER2) through monoclonal antibodies (mAbs) and a high ratio of drug to antibody (DAR). The achievements of Kadcyla® (T-DM1) and Enhertu® (T-Dxd) have demonstrated that HER2-targeting antibodies, such as trastuzumab, have shown to be competitive in terms of efficacy and price for development. Furthermore, with the arrival of T-Dxd and Trodelvy®, high-DAR (7-8) ADCs, which differ from the moderate DAR (3-4) ADCs that were formerly regarded as conventional, are being acknowledged for their worth. Following this trend of drug development, we endeavored to develop a high-DAR ADC using a straightforward approach involving the utilization of DM1, a highly potent substance, in combination with the widely recognized trastuzumab. To achieve a high DAR, DM1 was conjugated to reduced cysteine through the simple design and synthesis of various dimaleimide linkers with differing lengths. Using LC and MS analysis, we have demonstrated that our synthesis methodology is uncomplicated and efficacious, yielding trastuzumab-based ADCs that exhibit a remarkable degree of uniformity. These ADCs have been experimentally substantiated to exert an inhibitory effect on cancer cells in vitro, thus affirming their value as noteworthy additions to the realm of ADCs.


Assuntos
Ado-Trastuzumab Emtansina , Imunoconjugados , Receptor ErbB-2 , Trastuzumab , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Ado-Trastuzumab Emtansina/química , Trastuzumab/química , Trastuzumab/farmacologia , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Maleimidas/química , Maleimidas/síntese química , Relação Dose-Resposta a Droga , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Maitansina/química , Maitansina/farmacologia , Maitansina/síntese química , Maitansina/análogos & derivados , Linhagem Celular Tumoral , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/síntese química , Antineoplásicos Imunológicos/farmacologia
2.
Front Immunol ; 14: 1178776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122692

RESUMO

Background: Melanoma has the highest mortality rate among all the types of skin cancer. In melanoma, M2-like tumor-associated macrophages (TAMs) are associated with the invasiveness of tumor cells and a poor prognosis. Hence, the depletion or reduction of M2-TAMs is a therapeutic strategy for the inhibition of tumor progression. The aim of this study was to evaluate the therapeutic effects of M-DM1, which is a conjugation of melittin (M), as a carrier for M2-like TAMs, and mertansine (DM1), as a payload to induce apoptosis of TAMs, in a mouse model of melanoma. Methods: Melittin and DM1 were conjugated and examined for the characterization of M-DM1 by high-performance liquid chromatography and electrospray ionization mass spectrometry. Synthesized M-DM1 were examined for in vitro cytotoxic effects. For the in vivo study, we engrafted murine B16-F10 into right flank of C57BL/6 female mice and administered an array of treatments (PBS, M, DM1, or M-DM1 (20 nmol/kg)). Subsequently, the tumor growth and survival rates were analyzed, as well as examining the phenotypes of tumor-infiltrating leukocytes and expression profiles. Results: M-DM1 was found to specifically reduce M2-like TAMs in melanoma, which potentially leads to the suppression of tumor growth, migration, and invasion. In addition, we also found that M-DM1 improved the survival rates in a mouse model of melanoma compared to M or DM1 treatment alone. Flow cytometric analysis revealed that M-DM1 enhanced the infiltration of CD8+ cytotoxic T cells and natural killer cells (NK cells) in the tumor microenvironment. Conclusion: Taken together, our findings highlight that M-DM1 is a prospective agent with enhanced anti-tumor effects.


Assuntos
Melanoma , Meliteno , Feminino , Camundongos , Animais , Meliteno/farmacologia , Meliteno/metabolismo , Macrófagos Associados a Tumor/metabolismo , Estudos Prospectivos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Melanoma/patologia , Microambiente Tumoral
3.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432075

RESUMO

Triple-negative breast cancer (TNBC) is defined as a kind of breast cancer that lacks estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptors (HER2). This cancer accounts for 10-15% of all breast cancers and has the features of high invasiveness and metastatic potential. The treatment regimens are still lacking and need to develop novel inhibitors for therapeutic strategies. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses, based on a series of forty-seven thieno-pyrimidine derivatives, were performed to identify the key structural features for the inhibitory biological activities. The established comparative molecular field analysis (CoMFA) presented a leave-one-out cross-validated correlation coefficient q2 of 0.818 and a determination coefficient r2 of 0.917. In comparative molecular similarity indices analysis (CoMSIA), a q2 of 0.801 and an r2 of 0.897 were exhibited. The predictive capability of these models was confirmed by using external validation and was further validated by the progressive scrambling stability test. From these results of validation, the models were determined to be statistically reliable and robust. This study could provide valuable information for further optimization and design of novel inhibitors against metastatic breast cancer.


Assuntos
Relação Quantitativa Estrutura-Atividade , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Modelos Moleculares
4.
Molecules ; 27(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889310

RESUMO

Major issues in the pharmaceutical industry involve efficient risk management and control strategies of potential genotoxic impurities (PGIs). As a result, the development of an appropriate method to control these impurities is required. An optimally sensitive and simultaneous analytical method using gas chromatography with a mass spectrometry detector (GC-MS) was developed for 19 alkyl halides determined to be PGIs. These 19 alkyl halides were selected from 144 alkyl halides through an in silico study utilizing quantitative structure-activity relationship (Q-SAR) approaches via expert knowledge rule-based software and statistical-based software. The analytical quality by design (QbD) approach was adopted for the development of a sensitive and robust analytical method for PGIs. A limited number of literature studies have reviewed the analytical QbD approach in the PGI method development using GC-MS as the analytical instrument. A GC equipped with a single quadrupole mass spectrometry detector (MSD) and VF-624 ms capillary column was used. The developed method was validated in terms of specificity, the limit of detection, quantitation, linearity, accuracy, and precision, according to the ICH Q2 guideline.


Assuntos
Dano ao DNA , Indústria Farmacêutica , Contaminação de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas
5.
Molecules ; 26(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916785

RESUMO

Nordihydroguaiaretic acid (NDGA) is a major lignan metabolite found in Larrea spp., which are widely used in South America to treat various diseases. In breast tissue, estradiol is metabolized to the catechol estrogens such as 4-hydroxyestradiol (4-OHE2), which have been proposed to be cancer initiators potentially involved in mammary carcinogenesis. Catechol-O-methyltransferase (COMT) catalyzes the O-methylation of catechol estrogens to their less toxic methoxy derivatives, such as 4-O-methylestradiol (4-MeOE2). The present study investigated the novel biological activities of NDGA in relation to COMT and the effects of COMT inhibition by NDGA on 4-OHE2-induced cyto- and genotoxicity in MCF-7 human breast cancer cells. Two methoxylated metabolites of NDGA, 3-O-methylNDGA (3-MNDGA) and 4-O-methyl NDGA (4-MNDGA), were identified in the reaction mixture containing human recombinant COMT, NDGA, and cofactors. Km values for the COMT-catalyzed metabolism of NDGA were 2.6 µM and 2.2 µM for 3-MNDGA and 4-MNDGA, respectively. The COMT-catalyzed methylation of 4-OHE2 was inhibited by NDGA at an IC50 of 22.4 µM in a mixed-type mode of inhibition by double reciprocal plot analysis. Molecular docking studies predicted that NDGA would adopt a stable conformation at the COMT active site, mainly owing to the hydrogen bond network. NDGA is likely both a substrate for and an inhibitor of COMT. Comet and apurinic/apyrimidinic site quantitation assays, cell death, and apoptosis in MCF-7 cells showed that NDGA decreased COMT-mediated formation of 4-MeOE2 and increased 4-OHE2-induced DNA damage and cytotoxicity. Thus, NDGA has the potential to reduce COMT activity in mammary tissues and prevent the inactivation of mutagenic estradiol metabolites, thereby increasing catechol estrogen-induced genotoxicities.


Assuntos
Inibidores de Catecol O-Metiltransferase/química , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Estrogênios de Catecol/metabolismo , Masoprocol/metabolismo , Masoprocol/farmacologia , Mutagênicos/toxicidade , Sítios de Ligação , Morte Celular/efeitos dos fármacos , Dano ao DNA , Estrogênios de Catecol/química , Estrogênios de Catecol/farmacologia , Humanos , Células MCF-7 , Masoprocol/química , Metilação , Simulação de Acoplamento Molecular , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/efeitos dos fármacos
6.
Int J Obes (Lond) ; 45(1): 122-129, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467614

RESUMO

BACKGROUND/OBJECTIVES: Polymethoxyselenoflavone (PMSF) is a compound that substitutes the oxygen atom in a flavonoid with selenium. This study aimed to investigate the effects of PMSFs on lipid metabolism in adipocytes and their anti-obesity potential. SUBJECTS/METHODS: To test lipolytic and thermogenic effects of the compounds in vitro, adipocytes differentiated from immortalized pre-brown adipocyte progenitors and pre-white adipocyte cell lines were treated with 19 PMSFs. The expression levels of brown adipocyte markers and genes related to mitochondrial metabolism were analyzed by qPCR and western blot. In vivo anti-obesity effect was investigated using diet-induced obesity mouse models and adipocyte-specific ATGL knockout mice. RESULTS: The qPCR analysis identified 2-(3,4-dimethoxyphenyl)-4H-selenochromen-4-one (DMPSC) as the most potent brown adipogenic candidate among the 19 compounds tested in this study. DMPSC treatment significantly increased the mitochondrial content and oxidative metabolism in adipocytes in vitro. Mechanistically, DMPSC treatment increased lipolysis through activation of PKA downstream signaling. Consistently, the in vivo treatment of DMPSC increased energy consumption, reduced body weight, and improved glucose tolerance in mice fed with high-fat diets. Moreover, DMPSC treatment increased brown adipocyte marker expression and mitochondrial content in adipose tissue of mice. The anti-obesity effects were absent in adipocyte-specific ATGL knockout mice, indicating that the DMPSC effect is mediated by cytosolic lipase-dependent mechanisms. CONCLUSIONS: Collectively, our results indicated that DMPSC exerted anti-obesity effects partially through the PKA signaling-mediated activation of lipolysis and brown adipose tissue metabolism.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Flavonoides/farmacologia , Lipólise/efeitos dos fármacos , Compostos de Selênio/farmacologia , Células 3T3-L1 , Adipócitos Marrons/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Obesidade/metabolismo
7.
Microorganisms ; 8(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722258

RESUMO

Marian Cove is experiencing some of the most rapid environmental changes in the Antarctic region; however, little is known about the response of bacterial communities to these changes. The main purpose of this study was to investigate the spatial variation of physical‒biogeochemical‒bacterial community features in the Marian Cove surface waters and the environmental parameters governing the spatial variation in the bacterial community composition during the summer of 2018. The Marian Cove surface waters are largely composed of two different characteristics of water masses: relatively low-temperature, -salinity, and -nutrient surface glacier water (named SGW) and relatively high-temperature, -salinity, and -nutrient surface Maxwell Bay water (named SMBW). The SGW bacterial communities were dominated by unclassified Cryomorphaceae, Sedimenticola, and Salibacter genera, while the SMBW bacterial communities were dominated by Sulfitobacter, Arcobacter, and Odoribacter genera. Spatial variations in bacterial community composition were mainly attributed to physical and biogeochemical characteristics, suggesting that the bacterial community composition of the Marian Cove surface waters is mainly determined by environmental characteristics. These findings provide a foundation to improve the understanding of bacterial community variations in response to a rapidly changing Marian Cove in the Antarctic.

8.
Pharmacogenomics J ; 20(4): 601-612, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32015453

RESUMO

Previously, we identified Ras homologous A (RHOA) as a major signaling hub in gastric cancer (GC), the third most common cause of cancer death in the world, prompting us to rationally design an efficacious inhibitor of this oncogenic GTPase. Here, based on that previous work, we extend those computational analyses to further pharmacologically optimize anti-RHOA hydrazide derivatives for greater anti-GC potency. Two of these, JK-136 and JK-139, potently inhibited cell viability and migration/invasion of GC cell lines, and mouse xenografts, diversely expressing RHOA. Moreover, JK-136's binding affinity for RHOA was >140-fold greater than Rhosin, a nonclinical RHOA inhibitor. Network analysis of JK-136/-139 vs. Rhosin treatments indicated downregulation of the sphingosine-1-phosphate, as an emerging cancer metabolic pathway in cell migration and motility. We assert that identifying and targeting oncogenic signaling hubs, such as RHOA, represents an emerging strategy for the design, characterization, and translation of new antineoplastics, against gastric and other cancers.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Neoplasias Gástricas/tratamento farmacológico , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos SCID , Simulação de Acoplamento Molecular/métodos , Estrutura Secundária de Proteína , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteína rhoA de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775247

RESUMO

Gene expression and tumor growth can be regulated by methylation levels of lysine residues on histones, which are controlled by histone lysine demethylases (KDMs). Series of benzo[b]tellurophene and benzo[b]selenophene compounds were designed and synthesized and they were evaluated for histone H3 lysine 9 demethylase (KDM4) inhibitory activity. Among the carbamates, alcohol and aromatic derivatives, tert-butyl benzo[b]tellurophen-2-ylmethylcarbamate (compound 1c) revealed KDM4 specific inhibitory activity in cervical cancer HeLa cells, whereas the corresponding selenium or oxygen substitute compounds did not display any inhibitory activity toward KDM4. Compound 1c also induced cell death in cervical and colon cancer but not in normal cells. Thus, compound 1c, a novel inhibitor of KDM4, constitutes a potential therapeutic and research tool against cancer.


Assuntos
Carbamatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Histonas/química , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Lisina/química , Carbamatos/química , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Inibidores Enzimáticos/química , Células HeLa , Humanos , Células Tumorais Cultivadas
10.
J Agric Food Chem ; 67(31): 8649-8659, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283213

RESUMO

Spent coffee grounds (SCG) are the most abundant coffee byproduct and are generally discarded as waste. The horticultural use of SCG and SCG compost (SCGC) has become popular due to a growing interest in environmentally friendly measures for waste disposal. Estrogen-like endocrine disrupting chemicals in the soil can be absorbed by plants and subsequently by humans who consume these plants. The objectives of this study are to determine the phytochemical profiles of extracts of SCG and SCGC and to evaluate the estrogen-like activities of SCG, SCGC, and the major coffee phenolic acids, specifically, 5-O-caffeoylquinic acid (CQA), caffeic acid, and ferulic acid. Their inductive effects on estrogen receptor (ER)-mediated gene transcription have been examined in cultured cell lines. CQA was the most abundant phenolic acid in SCG and SCGC and was further examined for its ER-mediated estrogen-like activity using various assays. This is the first study to report the estrogen-like signaling activities of coffee byproducts and their major constituents.


Assuntos
Coffea/química , Hidroxibenzoatos/metabolismo , Fitoestrógenos/metabolismo , Extratos Vegetais/metabolismo , Receptores de Estrogênio/genética , Ativação Transcricional , Resíduos/análise , Animais , Ácidos Cafeicos/análise , Ácidos Cafeicos/metabolismo , Linhagem Celular , Compostagem , Feminino , Genes Reporter , Humanos , Hidroxibenzoatos/química , Fitoestrógenos/química , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/metabolismo , Sementes/química
11.
Br J Cancer ; 120(5): 488-498, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30792535

RESUMO

BACKGROUND: Gastric cancer (GC) is a highly heterogeneous disease with few "targeted" therapeutic options. Previously, we demonstrated involvement of the transcription factor HNF4α in human GC tumours, and the developmental signal mediator, WNT5A, as a prognostic GC biomarker. One previously developed HNF4α antagonist, BI6015, while not advancing beyond preclinical stages, remains useful for studying GC. METHODS: Here, we characterised the antineoplastic signalling activity of derivatives of BI6015, including transfer of the nitro group from the para position, relative to a methyl group on its benzene ring, to the ortho- and meta positions. We assessed binding efficacy, through surface plasmon resonance and docking studies, while biologic activity was assessed by antimitogenic efficacy against a panel of GC cell lines, and dysregulated transcriptomes, followed by pathway and subpathway analysis. RESULTS: The para derivative of BI6105 was found substantially more growth inhibitory, and effective, in downregulating numerous oncogenic signal pathways, including the embryonic cascade WNT. The ortho and meta derivatives, however, failed to downregulate WNT or other embryonic signalling pathways, unable to suppress GC growth. CONCLUSION: Straightforward strategies, employing bioinformatics analyses, to facilitate the effective design and development of "druggable" transcription factor inhibitors, are useful for targeting specific oncogenic signalling pathways, in GC and other cancers.


Assuntos
Benzimidazóis/farmacologia , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Neoplasias Gástricas/metabolismo , Sulfonamidas/farmacologia , Proteínas Wnt/efeitos dos fármacos , Linhagem Celular Tumoral , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Transdução de Sinais , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Proteínas Wnt/metabolismo
12.
Org Biomol Chem ; 15(14): 3074-3083, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28321447

RESUMO

Substantial research has suggested that the configuration and the total number of functional groups on flavones influence their bioactivity. To investigate the changes in the biological activities of selenoflavones in relationship to structural changes, the development of a generally applicable synthetic method was a key. Until now, an efficient pathway for palladium-catalyzed direct arylation with the selenocyclic enone systems is not known in the literature. We herein introduce a simple direct C-H arylation of two difficult coupling partners, selenochromones and electron-rich aryl bromide, affording diverse polymethoxyselenoflavones with great efficiency and high selectivity.


Assuntos
Carbono/química , Cromonas/química , Flavonas/química , Flavonas/síntese química , Hidrogênio/química , Selênio/química , Catálise , Técnicas de Química Sintética , Paládio/química , Estereoisomerismo
13.
Sci Rep ; 7: 41810, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28155909

RESUMO

The comparison of sediment trap data with physical and biogeochemical variables in the surface water column of the Tropical Northwestern Pacific Ocean (TNWPO) indicated that the magnitude of the springtime biological pump has reduced with time due to a corresponding decrease in the biomass of cyanobacterial N2 fixer. The decrease in the biomass of N2 fixer likely resulted from a reduction in phosphate concentrations in response to surface water warming and consequent shoaling of the mixed layer depth during the study period (2009-2014). The same reduction in biological pump was also observed during summer. However, the cause of the summer reduction remains uncertain and is worth assessing in future studies. Our findings have major implications for predicting future trends of the biological pump in the TNWPO, where significant warming has occurred.


Assuntos
Biomassa , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Carbono/metabolismo , Oceano Pacífico , Fitoplâncton/fisiologia , Estações do Ano
14.
Oncotarget ; 7(49): 81435-81451, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27806312

RESUMO

Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer "Big Data" has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of "hit" compounds.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Gástricas/genética , Proteína rhoA de Ligação ao GTP/genética , Animais , Antineoplásicos/farmacologia , Povo Asiático/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Bases de Dados Genéticas , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , Camundongos SCID , Terapia de Alvo Molecular , Interferência de RNA , República da Coreia , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/etnologia , Neoplasias Gástricas/patologia , Fatores de Tempo , Transcriptoma , Transfecção , Carga Tumoral , Regulação para Cima , População Branca/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/metabolismo
15.
Mol Med Rep ; 13(3): 2078-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26781331

RESUMO

Interruptin B has been isolated from Cyclosorus terminans, however, its pharamcological effect has not been fully identified. In the present study, the effects of interruptin B, from C. terminans, on brown adipocyte differentiation and glucose uptake in adipose­derived stem cells (ASCs) were investigated. The results revealed that interruptin B dose­dependently enhanced the adipogenic differentiation of ASCs, with an induction in the mRNA expression levels of peroxisome proliferator­activated receptor (PPAR)­α and PPAR­Î³. In addition, interruptin B efficiently increased the number and the membrane potential of mitochondria and upregulated the mRNA expression levels of uncoupling protein (UCP)­1 and cyclooxygenase (COX)­2, which are all predominantly expressed in brown adipocytes. Interruptin B increased glucose consumption in differentiated ASCs, accompanied by the upregulation in the mRNA expression levels of glucose transporter (GLUT)­1 and GLUT­4. The computational analysis of molecular docking, a luciferase reporter assay and surface plasmon resonance confirmed the marked binding affinity of interruptin B to PPAR­α and PPAR­Î³ (K(D) values of 5.32 and 0.10 µm, respectively). To the best of our knowledge, the present study is the first report to show the stimulatory effects of interruptin B on brown adipocyte differentiation and glucose uptake in ASCs, through its role as a dual PPAR­α and PPAR­Î³ ligand. Therefore, interruptin B could be further developed as a therapeutic agent for the treatment of diabetes.


Assuntos
Adipócitos Marrons/citologia , Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Chalconas/farmacologia , Cumarínicos/farmacologia , Glucose/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Chalconas/química , Simulação por Computador , Cumarínicos/química , Células Hep G2 , Humanos , Ligantes , Simulação de Acoplamento Molecular , PPAR alfa/antagonistas & inibidores , PPAR alfa/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Células-Tronco/efeitos dos fármacos , Ressonância de Plasmônio de Superfície
16.
Org Biomol Chem ; 14(2): 623-630, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26540619

RESUMO

In this study, we executed an effective and novel enantioselective Michael/cyclodehydration sequential reaction between pyrazolin-5-one (or 4-hydroxy-2-pyrone) and chalcones that is catalyzed by a quinine-derived primary amine L7 in the presence of Boc-D-Phg-OH. Chiral pyranopyrazoles and pyranocoumarins were obtained in excellent enantioselectivities (up to 93%) with moderate yields and moderate enantioselectivities with high yields (up to 84%).


Assuntos
Aminas/química , Cumarínicos/síntese química , Piranos/síntese química , Pirazóis/síntese química , Quinina/química , Catálise , Cumarínicos/química , Estrutura Molecular , Piranos/química , Pirazóis/química , Quinina/análogos & derivados , Estereoisomerismo
17.
Int J Mol Sci ; 16(12): 29574-82, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26690420

RESUMO

The physicochemical properties and antioxidant activity of a molecule could be improved by the substitution of an oxygen atom in a molecule with selenium. We synthesized selenoflavanones and flavanones to evaluate their neuroprotective effects. The selenoflavanones showed improved physicochemical properties, suggestive of the ability to pass through the blood-brain barrier (BBB). They showed in vitro antioxidant effects against hydrogen peroxide, and did not result in severe cytotoxicity. Moreover, infarction volumes in a transient ischemia mouse model were significantly reduced by the selenoflavanone treatments.


Assuntos
Flavanonas/síntese química , Fármacos Neuroprotetores/síntese química , Compostos Organometálicos/síntese química , Animais , Antioxidantes/síntese química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Flavanonas/farmacologia , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , Compostos Organometálicos/farmacologia , Estresse Oxidativo , Selênio/química
18.
Mol Med Rep ; 12(4): 5203-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26134517

RESUMO

Phospholipid derivatives, such as lysophosphatidic acid (LPA), exhibit mitogenic effects on mesenchymal stem cells; however, the molecular mechanism underlying this stimulation has yet to be identified. The aims of the present study were as follows: To evaluate the stimulatory effects of LPA on the proliferation and migration of adipose­derived stem cells (ASCs); to study the association between reactive oxygen species (ROS) and LPA signaling in ASCs; and to investigate the microRNAs upregulated by LPA treatment in ASCs. The results of the present study demonstrated that LPA increased the proliferation and migration of ASCs, and acted as a mitogenic signal via extracellular signal­regulated kinases 1/2 and the phosphoinositide 3­kinase/Akt signaling pathways. The LPA1 receptor is highly expressed in ASCs, and pharmacological inhibition of it by Ki16425 significantly attenuated the proliferation and migration of ASCs. In addition, LPA treatment generated ROS via NADPH oxidase 4, and ROS were able to function as signaling molecules to increase the proliferation and migration of ASCs. The induction of ROS by LPA treatment also upregulated the expression of miR­210. A polymerase chain reaction array assay demonstrated that the expression levels of adrenomedullin and Serpine1 were increased following treatment with LPA. Furthermore, transfection with Serpine1­specific small interfering RNA attenuated the migration of ASCs. In conclusion, the present study is the first, to the best of our knowledge, to report that ROS generation and miR­210 expression are associated with the LPA­induced stimulation of ASCs, and that Serpine1 mediates the LPA­induced migration of ASCs. These results further suggest that LPA may be used for ASC stimulation during stem cell expansion.


Assuntos
Tecido Adiposo/citologia , Movimento Celular/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Adrenomedulina/genética , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
19.
PLoS One ; 10(7): e0133656, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26196390

RESUMO

The expression levels of anoctamin 1 (ANO1, TMEM16A), a calcium-activated chloride channel (CaCC), are significantly increased in several tumors, and inhibition of ANO1 is known to reduce cell proliferation and migration. Here, we performed cell-based screening of a collection of natural products and drug-like compounds to identify inhibitors of ANO1. As a result of the screening, idebenone, miconazole and plumbagin were identified as novel ANO1 inhibitors. Electrophysiological studies showed that idebenone, a synthetic analog of coenzyme Q10, completely blocked ANO1 activity in FRT cells expressing ANO1 without any effect on intracellular calcium signaling and CFTR, a cAMP-regulated chloride channel. The CaCC activities in PC-3 and CFPAC-1 cells expressing abundant endogenous ANO1 were strongly blocked by idebenone. Idebenone inhibited cell proliferation and induced apoptosis in PC-3 and CFPAC-1 cells, but not in A549 cells, which do not express ANO1. These data suggest that idebenone, a novel ANO1 inhibitor, has potential for use in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Canais de Cloreto/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquinona/análogos & derivados , Animais , Anoctamina-1 , Apoptose , Sinalização do Cálcio , Linhagem Celular Tumoral , Proliferação de Células , Canais de Cloreto/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Miconazol/farmacologia , Naftoquinonas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Ratos , Ratos Endogâmicos F344 , Ubiquinona/farmacologia
20.
Stem Cells Transl Med ; 4(7): 789-99, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25972147

RESUMO

UNLABELLED: : Because adipose-derived stem cells (ASCs) are usually expanded to acquire large numbers of cells for therapeutic applications, it is important to increase the production yield and regenerative potential during expansion. Therefore, a tremendous need exists for alternative ASC stimuli during cultivation to increase the proliferation and adipogenic differentiation of ASCs. The present study primarily investigated the involvement of megestrol acetate (MA), a progesterone analog, in the stimulation of ASCs, and identifies the target receptors underlying stimulation. Mitogenic and adipogenic effects of MA were investigated in vitro, and pharmacological inhibition and small interfering (si) RNA techniques were used to identify the molecular mechanisms involved in the MA-induced stimulation of ASCs. MA significantly increased the proliferation, migration, and adipogenic differentiation of ASCs in a dose-dependent manner. Glucocorticoid receptor (GR) is highly expressed compared with other nuclear receptors in ASCs, and this receptor is phosphorylated after MA treatment. MA also upregulated genes downstream of GR in ASCs, including ANGPTL4, DUSP1, ERRF11, FKBP5, GLUL, and TSC22D3. RU486, a pharmacological inhibitor of GR, and transfection of siGR significantly attenuated MA-induced proliferation, migration, and adipogenic differentiation of ASCs. Although the adipogenic differentiation potential of MA was inferior to that of dexamethasone, MA had mitogenic effects in ASCs. Collectively, these results indicate that MA increases the proliferation, migration, and adipogenic differentiation of ASCs via GR phosphorylation. SIGNIFICANCE: Magestrol acetate (MA) increases the proliferation, migration, and adipogenic differentiation of adipose-derived stem cells (ASCs) via glucocorticoid receptor phosphorylation. Therefore, MA can be applied to increase the production yield during expansion and can be used to facilitate adipogenic differentiation of ASCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...