Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111229

RESUMO

Inflammation is a natural defense mechanism against noxious stimuli, but chronic inflammation can lead to various chronic diseases. Neuroinflammation in the central nervous system plays an important role in the development and progression of neurodegenerative diseases. Polyphenol-rich natural products, such as Ecklonia cava (E. cava), are known to have anti-inflammatory and antioxidant properties and can provide treatment strategies for neurodegenerative diseases by controlling neuroinflammation. We investigated the effects of an E. cava extract on neuroinflammation and neurodegeneration under chronic inflammatory conditions. Mice were pretreated with E. cava extract for 19 days and then exposed to E. cava with lipopolysaccharide (LPS) for 1 week. We monitored pro-inflammatory cytokines levels in the serum, inflammation-related markers, and neurodegenerative markers using Western blotting and qRT-PCR in the mouse cerebrum and hippocampus. E. cava reduced pro-inflammatory cytokine levels in the blood and brain of mice with LPS-induced chronic inflammation. We also measured the activity of genes related to neuroinflammation and neurodegeneration. Surprisingly, E. cava decreased the activity of markers associated with inflammation (NF-kB and STAT3) and a neurodegenerative disease marker (glial fibrillary acidic protein, beta-amyloid) in the cerebrum and hippocampus of mice. We suggest that E. cava extract has the potential as a protective agent against neuroinflammation and neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Camundongos , Animais , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/efeitos adversos , Lipopolissacarídeos/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Citocinas/metabolismo , Microglia , Camundongos Endogâmicos C57BL
2.
Cells ; 12(5)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36899888

RESUMO

Heart failure (HF) is an emerging epidemic with a high mortality rate. Apart from conventional treatment methods, such as surgery or use of vasodilation drugs, metabolic therapy has been suggested as a new therapeutic strategy. The heart relies on fatty acid oxidation and glucose (pyruvate) oxidation for ATP-mediated contractility; the former meets most of the energy requirement, but the latter is more efficient. Inhibition of fatty acid oxidation leads to the induction of pyruvate oxidation and provides cardioprotection to failing energy-starved hearts. One of the non-canonical types of sex hormone receptors, progesterone receptor membrane component 1 (Pgrmc1), is a non-genomic progesterone receptor associated with reproduction and fertility. Recent studies revealed that Pgrmc1 regulates glucose and fatty acid synthesis. Notably, Pgrmc1 has also been associated with diabetic cardiomyopathy, as it reduces lipid-mediated toxicity and delays cardiac injury. However, the mechanism by which Pgrmc1 influences the energy-starved failing heart remains unknown. In this study, we found that loss of Pgrmc1 inhibited glycolysis and increased fatty acid/pyruvate oxidation, which is directly associated with ATP production, in starved hearts. Loss of Pgrmc1 during starvation activated the phosphorylation of AMP-activated protein kinase, which induced cardiac ATP production. Pgrmc1 loss increased the cellular respiration of cardiomyocytes under low-glucose conditions. In isoproterenol-induced cardiac injury, Pgrmc1 knockout resulted in less fibrosis and low heart failure marker expression. In summary, our results revealed that Pgrmc1 ablation in energy-deficit conditions increases fatty acid/pyruvate oxidation to protect against cardiac damage via energy starvation. Moreover, Pgrmc1 may be a regulator of cardiac metabolism that switches the dominance of glucose-fatty acid usage according to nutritional status and nutrient availability in the heart.


Assuntos
Insuficiência Cardíaca , Receptores de Progesterona , Humanos , Trifosfato de Adenosina/uso terapêutico , Ácidos Graxos/metabolismo , Glucose/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas de Membrana , Miócitos Cardíacos/metabolismo , Ácido Pirúvico
3.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166668, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36822448

RESUMO

BACKGROUNDS AND AIMS: Type 2 diabetes mellitus (T2D) is a chronic disease characterized by insulin resistance and hyperglycemia. To investigate T2D, genetic and chemical induced hyper-obese rodent models have been experimentally developed. However, establishment of moderate-obese diabetes model will confer diverse opportunities for translational studies. In this study, we found the chemical, GLUTFOURINH® (GFI), induces post-translational degradation of glucose transporter 4 (GLUT4). We aimed to establish novel diabetic model by using GFI. METHODS AND RESULTS: Low plasma membrane GLUT4 (pmGLUT4) levels by GFI resulted in reduction of intracellular glucose uptake and TG, and increase of intracellular FFA in A204 cells. Likewise, GFI treatment decreased intracellular TG and increased intracellular FFA levels in Hep3B and 3T3-L1 cells. Mice were administered with GFI (16 mg/kg) for short-term (3-day) and long-term (28- and 31-day) to compared with vehicle injection, HFD model, and T2D model, respectively. Short-term and long-term GFI treatments induced hyperglycemia and hyperinsulinemia with low pmGLUT4 levels. Compared to HFD model, long-term GFI with HFD reduced adipose weight and intracellular TG accumulation, but increased plasma FFA. GFI treatment resulted in insulin resistance by showing low QUICKI and high HOMA-IR values, and low insulin response during insulin tolerance test. Additionally, low pmGLUT4 by GFI heightened hyperglycemia, hyperinsulinemia, and insulin resistance compared to T2D model. CONCLUSIONS: In summary, we report GLUT4 degradation by novel chemical (GFI) induces moderate-obese diabetes representing hyperglycemia, insulin resistance and low intracellular lipid accumulation. The GLUT4 degradation by GFI has translational value for studying diseases related to moderate-obese diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Hiperinsulinismo , Resistência à Insulina , Humanos , Camundongos , Animais , Resistência à Insulina/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Insulina , Hiperglicemia/metabolismo , Obesidade , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...