Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 18: 395-406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352172

RESUMO

Purpose: Statins are widely used in combination with omega-3 fatty acids for the treatment of patients with dyslipidemia. The aim of this study was to compare the pharmacokinetic (PK) profiles of atorvastatin and omega-3-acid ethyl esters between fixed-dose combination (FDC) and loose combination in healthy subjects. Methods: A randomized, open-label, single-dose, 2-sequence, 2-treatment, 4-period replicated crossover study was performed. Subjects were randomly assigned to one of the 2 sequences and alternately received four FDC soft capsules of atorvastatin/omega-3-acid ethyl esters (10/1000 mg) or a loose combination of atorvastatin tablets (10 mg × 4) and omega-3-acid ethyl ester soft capsules (1000 mg× 4) for four periods, each period accompanied by a high-fat meal. Serial blood samples were collected for PK analysis of atorvastatin, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). PK parameters were calculated by a non-compartmental analysis. The geometric mean ratio (GMR) and its 90% confidence interval (CI) of the FDC to the loose combination were calculated to compare PK parameters. Results: A total of 43 subjects completed the study as planned. The GMR (90% CI) of FDC to loose combination for maximum concentration (Cmax) and area under the time-concentration curve from zero to the last measurable point (AUClast) were 1.0931 (1.0054-1.1883) and 0.9885 (0.9588-1.0192) for atorvastatin, 0.9607 (0.9068-1.0178) and 0.9770 (0.9239-1.0331) for EPA, and 0.9961 (0.9127-1.0871) and 0.9634 (0.8830-1.0512) for DHA, respectively. The intra-subject variability for Cmax and AUClast of DHA was 30.8% and 37.5%, respectively, showing high variability. Both the FDC and the loose combination were safe and well tolerated. Conclusion: The FDC of atorvastatin and omega-3-acid ethyl esters showed comparable PK characteristics to the corresponding loose combination, offering a convenient therapeutic option for the treatment of dyslipidemia.


Assuntos
Dislipidemias , Ácido Eicosapentaenoico , Humanos , Masculino , Atorvastatina , Ácido Eicosapentaenoico/farmacocinética , Voluntários Saudáveis , Estudos Cross-Over , Ácidos Docosa-Hexaenoicos , República da Coreia , Combinação de Medicamentos , Área Sob a Curva
2.
Metabolites ; 9(4)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965644

RESUMO

Alteration in the number and composition of intestinal microbiota affects the metabolism of several xenobiotics. Gastrodin, isolated from Gastrodia elata, is prone to be hydrolyzed by intestinal microbiota. In the present study, the role of intestinal microbiota in gastrodin metabolism was investigated in vitro and in vivo. Gastrodin was incubated in an anaerobic condition with intestinal contents prepared from vehicle- and antibiotics-treated rats and the disappearance of gastrodin and formation of 4-hydroxybenzyl alcohol (4-HBA) was measured by liquid chromatography coupled to mass spectroscopy (LC-MS/MS). The results showed that almost all gastrodin incubated with control intestinal contents was metabolized to its aglycone in time- and concentration-dependent manners. In contrast, much less formation of 4-HBA was detected in intestinal contents from antibiotics-treated rats. Subsequently, in vivo pharmacokinetic study revealed that the antibiotic pretreatment of rats significantly affected the metabolism of gastrodin to 4-HBA. When administered orally, gastrodin was rapidly absorbed rapidly into plasma, metabolized to 4-HBA, and disappeared from the body within six hours. Interestingly, the pharmacokinetic parameters of 4-HBA were changed remarkably in antibiotics-treated rats, compared to control rats. The results clearly indicated that the antibiotics treatment of rats suppressed the ability of intestinal microbiota to metabolize gastrodin to 4-HBA and that, thereby, the pharmacodynamic action was significantly modulated.

3.
Biomol Ther (Seoul) ; 24(4): 446-52, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27098862

RESUMO

Pharmacokinetic interaction of chrysin, a flavone present in honey, propolis and herbs, with caffeine was investigated in male Sprague-Dawley rats. Because chrysin inhibited CYP1A-selective ethoxyresorufin O-deethylase and methoxyresorufin O-demethylase activities in enriched rat liver microsomes, the pharmacokinetics of caffeine, a CYP 1A substrate, was studied following an intragastric administration with 100 mg/kg chrysin. In addition to the oral bioavailability of chrysin, its phase 2 metabolites, chrysin sulfate and chrysin glucuronide, were determined in rat plasma. As results, the pharmacokinetic parameters for caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) were not changed following chrysin treatment in vivo, despite of its inhibitory effect on CYP 1A in vitro. The bioavailability of chrysin was found to be almost zero, because chrysin was rapidly metabolized to its sulfate and glucuronide conjugates in rats. Taken together, it was concluded that the little interaction of chrysin with caffeine might be resulted from the rapid metabolism of chrysin to its phase 2 metabolites which would not have inhibitory effects on CYP enzymes responsible for caffeine metabolism.

4.
Molecules ; 21(3): 337, 2016 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-26978333

RESUMO

Since many glycoside compounds in natural products are hydrolyzed by intestinal microbiota when administered orally, it is of interest to know whether their pharmacological effects are derived from the glycoside itself or from the aglycone form in vivo. An interesting example is baicalin versus baicalein, the aglycone of baicalin, which is contained in some herbs from Labiatae including Scutellaria baicalensis Georgi and Scutellaria lateriflora Linne. The herbs have been extensively used for treatment of inflammatory diseases in Asia. Although there have been numerous reports regarding the pharmacological effects of baicalin and baicalein in vivo and in vitro, some reports indicated that the glycoside form would hardly be absorbed in the intestine and that it should be hydrolyzed to baicalein in advance for absorption. Therefore, the role of metabolism by intestinal microbiota should also be considered in the metabolism of baicalin. In addition, baicalin contains a glucuronide moiety in its structure, by which baicalin and baicalein show complex pharmacokinetic behaviors, due to the interconversion between them by phase II enzymes in the body. Recently, concerns about drug interaction with baicalin and/or baicalein have been raised, because of the co-administration of Scutellaria species with certain drugs. Herein, we reviewed the role of intestinal microbiota in pharmacokinetic characteristics of baicalin and baicalein, with regards to their pharmacological and toxicological effects.


Assuntos
Interações Medicamentosas , Flavonoides/farmacologia , Microbioma Gastrointestinal , Animais , Biomarcadores , Flavanonas/química , Flavanonas/farmacocinética , Flavanonas/farmacologia , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Estrutura Molecular , Ratos
5.
Biomol Ther (Seoul) ; 23(2): 201-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25767690

RESUMO

Scutellaria baicalensis is one of the most widely used herbal medicines in East Asia. Because baicalein and baicalin are major components of this herb, it is important to understand the effects of these compounds on drug metabolizing enzymes, such as cytochrome P450 (CYP), for evaluating herb-drug interaction. The effects of baicalin and baicalein on activities of ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), benzyloxyresorufin O-debenzylase (BROD), p-nitrophenol hydroxylase and erythromycin N-demethylase were assessed in rat liver microsomes in the present study. In addition, the pharmacokinetics of caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) in baicalin-treated rats were compared with untreated control. As results, EROD, MROD and BROD activities were inhibited by both baicalin and baicalein. However, there were no significant differences in the pharmacokinetic parameters of oral caffeine and its three metabolites between control and baicalin-treated rats. When the plasma concentration of baicalin was determined, the maximum concentration of baicalin was below the estimated IC50 values observed in vitro. In conclusion, baicalin had no effects on the pharmacokinetics of caffeine and its metabolites in vivo, following single oral administration in rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...