Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Chem ; 11: 1223967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744056

RESUMO

Literature reports the chemical constituent yields of electronic nicotine delivery systems (ENDS) aerosol collected using a range of aerosol collection strategies. The number of puffs to deplete an ENDS product varies widely, but collections often consist of data from the first 50-100 puffs. However, it is not clear whether these discrete puff blocks are representative of constituent yields over the life of a pod. We aimed to assess the effect of differing aerosol collection strategies on reported yields for select chemical constituents in the aerosol of closed pod-based ENDS products. Constituents analyzed were chosen to reflect important classes of compounds from the Final Premarket Tobacco Product Application Guidance. Yields were normalized to total device mass loss (DML). Collection strategies that consisted of partial pod collection were valid for determining yields of constituents whose DML normalized yields were consistent for the duration of pod life. These included primary aerosol constituents, such as propylene glycol, glycerol, and nicotine, and whole pod yields could be determined from initial puff blocks. However, changes were observed in the yields of some metals, some carbonyl compounds, and glycidol over pod life in a chemical constituent and product dependent manner. These results suggest that collection strategies consisting of initial puff block collections require validation per chemical constituent/product and are not appropriate for chemical constituents with variable yields over pod life. Whole pod collection increased sensitivity and accuracy in determining metal, carbonyl, and glycidol yields compared to puff block-based collection methodologies for all products tested.

3.
Front Chem ; 11: 1212744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601911

RESUMO

Leachable investigations are routinely undertaken across a range of sectors (e.g., pharmaceuticals, medical devices, etc.) to determine whether chemicals from a container closure system transfer into a product under normal conditions of use. For Electronic Nicotine Delivery Systems (ENDS) the container closure system includes all materials in contact with the e-liquid that is aerosolized and subsequently inhaled by the user. Currently, there is no guidance for conducting leachable studies for ENDS products, however, there are relevant guidance documents for orally inhaled drug products that can be applied to an ENDS container closure system. We present a case study of the analytical investigation of two leachable compounds identified in simulated leachable studies using aged JUULpods filled with unflavored e-liquid (PG/VG/nicotine/benzoic acid). Both compounds had limited toxicological information and were considered data deficient. A qualitative analysis of the aerosol collected from aged commercial JUULpods (Virginia Tobacco and Menthol), using a similar analytical method (LC-MS/MS) used in the simulated leachable studies, showed no trace or detectable levels of either leachable compound. Therefore, this qualitative analysis did not provide semi-quantitative values for the data-deficient leachable compounds necessary to support toxicological risk assessment. Further, no commercial authentic standards or reasonable synthetic route were available due to the molecular size and structural complexity of the compounds. Instead, method limits were established using an alternative approach to standard ICH guidelines. The experimentally determined method limit of quantitation, using spiked samples of simulated leachable e-liquid, provided conservative semi-quantitative values for each data deficient leachable compound in the aerosol that enabled a transfer efficiency from e-liquid to aerosol to be estimated. The transfer efficiency of each leachable compound was experimentally determined to be less than 2% based on the limit of quantitation, which then could be used to define a relevant exposure limit for the toxicological risk assessment. This work details a novel analytical approach for determining the transfer efficiency of data deficient leachable compounds from ENDS container closure systems into the ENDS aerosol to support toxicological health risk assessments.

4.
Toxics ; 12(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38250972

RESUMO

Toxicological evaluations of flavor chemicals for use in inhalation products that utilize heat for aerosol generation are complicated because of the potential effect heat may have on the flavor chemical. The objective was to develop a thermal degradation technique to screen flavor chemicals as part of a toxicological testing program for their potential use in ENDS formulations. Based upon published data for acetaldehyde, acrolein, and glycidol from ENDS products (common thermal degradants of propylene glycol and glycerin), the pyrolizer temperature was adjusted until a similar ratio of acetaldehyde, acrolein, and glycidol was obtained from a 60/40 ratio (v/v) of glycerin/propylene glycol via GC/MS analysis. For each of 90 flavor chemicals, quantitative measurements of acetaldehyde, acrolein, and glycidol, in addition to semiquantitative non-targeted analysis tentatively identifying chemicals from thermal degradation, were obtained. Twenty flavor chemicals transferred at greater than 99% intact, another 26 transferred at greater than 95% intact, and another 15 flavor chemicals transferred at greater than 90% intact. Most flavor chemicals resulted in fewer than 10-12 tentatively identified thermal degradants. The practical approach to the thermal degradation of flavor chemicals provided useful information as part of the toxicological evaluation of flavor chemicals for potential use in ENDS formulations.

6.
J Chromatogr A ; 1653: 462376, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34293516

RESUMO

Closed form expressions for the prediction of retention times and peak widths for gradient liquid chromatography are particularly useful in understanding, rationalizing and optimizing separations. These expressions are obtained by integrating differential equations, in conjunction with a model of the variation of the retention factor as a function of mobile phase composition. Two of these models, the linear solvent strength (LSS) model and the Neue-Kuss (NK) model are explored in the present work. Here, we expand on these closed form expressions to account for effects of sample volume overload and a mismatch between the sample solvent and the initial mobile phase composition for the gradient. We show that there have been errors in expressions reported in the literature, and we have evaluated the accuracy of the predictions from the closed form expressions reported here using a recently developed liquid chromatography simulator. The expressions assume a constant plate height and consider elution across four zones of the gradient profile - elution in the sample solvent, elution in the initial (isocratic) mobile phase caused by the gradient delay volume, elution during a linear gradient, and elution post-gradient at the final (isocratic) mobile phase composition. The expressions generally give reasonably accurate predictions for retention times and peak widths, except for cases where the solute elutes during transitions between the different zones. The average magnitude of the prediction errors for retention time and peak width relative to simulation were 0.093% and 0.40% for the LSS expressions for ten amphetamine solutes at 36 different separation conditions, and 0.22% and 1.8% for the NK expressions for eight alkylbenzene solutes at 36 different separation conditions, respectively.


Assuntos
Cromatografia Líquida , Simulação por Computador , Solventes , Cromatografia Líquida/métodos , Indicadores e Reagentes , Modelos Lineares , Solventes/química
7.
J Chromatogr A ; 1564: 128-136, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29937121

RESUMO

A previously developed liquid chromatographic simulator (see parts I and II) [1-3] is extended to allow for simulations of stationary phase gradients with isocratic and gradient mobile phases. Gradient stationary phases have recently been proposed as means of engineering unique chromatographic selectivities. In the present work, the simulator provides retention times and peak widths that agree with closed form theory for a linear gradient in retention factor and provides accurate retention time predictions for experimentally implemented continuous and discontinuous gradients. Calculation of discontinuous gradients implemented using the commercially available POPLC system have shown good agreement with experiment, with the largest deviation of the simulated retention time from experiment of 4.5%. In addition, simulations of a novel continuous amine gradient column show good agreement with experiment, and give insights into synergistic interactions on column. With the exception of solutes that show evidence of synergistic interactions, the simulated retention times are in agreement with the 95% confidence limits of the experimental values.


Assuntos
Cromatografia Líquida/métodos , Simulação por Computador , Aminas/química , Anfetaminas/química , Indicadores e Reagentes , Dióxido de Silício/química , Solventes/química , Fatores de Tempo
8.
J Chromatogr A ; 1523: 162-172, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28747254

RESUMO

An important research direction in the continued development of two-dimensional liquid chromatography (2D-LC) is to improve the detection sensitivity of the method. This is especially important in applications where injection of large volumes of effluent from the first dimension (1D) column into the second dimension (2D) column leads to severe 2D peak broadening and peak shape distortion. For example, this is common when coupling two reversed-phase columns and the organic solvent content of the 1D mobile phase overwhelms the 2D column with each injection of 1D effluent, leading to low resolution in the second dimension. In a previous study we validated a simulation approach based on the Craig distribution model and adapted from the work of Czok and Guiochon [1] that enabled accurate simulation of simple isocratic and gradient separations with very small injection volumes, and isocratic separations with mismatched injection and mobile phase solvents [2]. In the present study we have extended this simulation approach to simulate separations relevant to 2D-LC. Specifically, we have focused on simulating 2D separations where gradient elution conditions are used, there is mismatch between the sample solvent and the starting point in the gradient elution program, injection volumes approach or even exceed the dead volume of the 2D column, and the extent of sample loop filling is varied. To validate this simulation we have compared results from simulations and experiments for 101 different conditions, including variation in injection volume (0.4-80µL), loop filling level (25-100%), and degree of mismatch between sample organic solvent and the starting point in the gradient elution program (-20 to +20% ACN). We find that that the simulation is accurate enough (median errors in retention time and peak width of -1.0 and -4.9%, without corrections for extra-column dispersion) to be useful in guiding optimization of 2D-LC separations. However, this requires that real injection profiles obtained from 2D-LC interface valves are used to simulate the introduction of samples into the 2D column. These profiles are highly asymmetric - simulation using simple rectangular pulses leads to peak widths that are far too narrow under many conditions. We believe the simulation approach developed here will be useful for addressing practical questions in the development of 2D-LC methods.


Assuntos
Cromatografia Líquida , Simulação por Computador , Indicadores e Reagentes , Compostos Orgânicos , Solventes/química
10.
J Chromatogr A ; 1457: 41-9, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27345210

RESUMO

High-performance liquid chromatography (HPLC) simulators are effective method development tools. The goal of the present work was to design and implement a simple algorithm for simulation of liquid chromatographic separations that allows for characterization of the effect of injection solvent mismatch and injection solvent volume overload. The simulations yield full analyte profiles during solute migration and at elution, which enable a thorough physical understanding of the effects of method variables on chromatographic performance. The Craig counter-current distribution model (the plate model) is used as the basis for simulation, where a local retention factor is assigned for each spatial and temporal element within the simulation. The algorithm, which is an adaptation of an approach originally described by Czok and Guiochon (Ref. [10]), is sufficiently flexible to allow the use of either linear (e.g., Linear Solvent Strength Theory) or non-linear models of solute retention (e.g., Neue-Kuss (Ref. [36])). In this study, both types of models were used, one for simulating separations of a homologous series of alkylbenzenes, and the other for separations of selected amphetamines. The simulation program was validated first by comparison of simulated retention times and peak widths for five amphetamines to predictions obtained using linear solvent strength (LSS) theory, and to results from experimental separations of these compounds. The simulated retention times for the amphetamines agreed within 0.02% and 2.5% compared to theory and experiment, respectively. Secondly, the program was evaluated for simulating the case where there is a compositional mismatch between the mobile phase at the column inlet and the injection solvent (i.e., the sample matrix). This work involved alkylbenzenes, and retention time and peak width predictions from simulations were within 1.5 and 6.0% of experimental values, respectively, even without correction for extra-column dispersion. The issues of sample/eluent solvent mismatch and solvent volume overload are especially important when considering the challenges of transferring eluent from the first to the second dimension in comprehensive two-dimensional liquid chromatography.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Solventes/química , Modelos Teóricos , Dinâmica não Linear
11.
Anal Chem ; 88(11): 5941-9, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27203513

RESUMO

Stationary phase gradients on monolithic silica columns have been successfully and reproducibly prepared and characterized with comparisons made to uniformly modified stationary phases. Stationary phase gradients hold great potential for use in liquid chromatography (LC), both in terms of simplifying analysis as well as providing novel selectivity. In this work, we demonstrate the creation of a continuous stationary phase gradient on in-house synthesized monolithic columns by infusing an aminoalkoxysilane solution through the silica monoliths via controlled rate infusion. The presence of amine and its distribution along the length of gradient and uniformly modified columns were assessed via X-ray photoelectron spectroscopy (XPS). XPS showed a clear gradient in surface coverage along the length of the column for the gradient stationary phases while a near uniform distribution on the uniformly modified stationary phases. To demonstrate the application of these gradient stationary phases, the separations of both nucleobases and weak acids/weak bases on these gradient stationary phases have been compared to uniformly modified and unmodified silica columns. Of particular note, the retention characteristics of 11 gradient columns, 5 uniformly modified columns, and 5 unmodified columns have been tested to establish the reproducibility of the synthetic procedures. Standard deviations of the retention factors were in the range from 0.06 to 0.5, depending on the analyte species. We show that selectivity is achieved with the stationary phase gradients that are significantly different from either uniformly modified amine or unmodified columns. These results indicate the significant promise of this strategy for creating novel stationary phases for LC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...