Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31817005

RESUMO

Attention capability is an essential component of human-robot interaction. Several robot attention models have been proposed which aim to enable a robot to identify the attentiveness of the humans with which it communicates and gives them its attention accordingly. However, previous proposed models are often susceptible to noisy observations and result in the robot's frequent and undesired shifts in attention. Furthermore, most approaches have difficulty adapting to change in the number of participants. To address these limitations, a novel attentiveness determination algorithm is proposed for determining the most attentive person, as well as prioritizing people based on attentiveness. The proposed algorithm, which is based on relevance theory, is named the Scalable Hidden Markov Model (Scalable HMM). The Scalable HMM allows effective computation and contributes an adaptation approach for human attentiveness; unlike conventional HMMs, Scalable HMM has a scalable number of states and observations and online adaptability for state transition probabilities, in terms of changes in the current number of states, i.e., the number of participants in a robot's view. The proposed approach was successfully tested on image sequences (7567 frames) of individuals exhibiting a variety of actions (speaking, walking, turning head, and entering or leaving a robot's view). From these experimental results, Scalable HMM showed a detection rate of 76% in determining the most attentive person and over 75% in prioritizing people's attention with variation in the number of participants. Compared to recent attention approaches, Scalable HMM's performance in people attention prioritization presents an approximately 20% improvement.

2.
Sensors (Basel) ; 19(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434311

RESUMO

In the field of robot navigation, the odometric parameters, such as wheel radii and wheelbase length, and the relative pose of the optical sensing camera with respect to the robot are very important criteria for accurate operation. Hence, these parameters are necessary to be estimated for more precise operation. However, the odometric and head-eye parameters are typically estimated separately, which is an inconvenience and requires longer calibration time. Even though several researchers have proposed simultaneous calibration methods that obtain both odometric and head-eye parameters simultaneously to reduce the calibration time, they are only applicable to a mobile robot with a fixed camera mounted, not for mobile robots equipped with a pan-tilt motorized camera systems, which is a very common configuration and widely used for wide view. Previous approaches could not provide the z-axis translation parameter between head-eye coordinate systems on mobile robots equipped with a pan-tilt camera. In this paper, we present a full simultaneous mobile robot calibration of head-eye and odometric parameters, which is appropriate for a mobile robot equipped with a camera mounted on the pan-tilt motorized device. After a set of visual features obtained from a chessboard or natural scene and the odometry measurements are synchronized and received, both odometric and head-eye parameters are iteratively adjusted until convergence prior to using a nonlinear optimization method for more accuracy.

3.
Sensors (Basel) ; 18(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384481

RESUMO

This paper presents a stereo camera-based head-eye calibration method that aims to find the globally optimal transformation between a robot's head and its eye. This method is highly intuitive and simple, so it can be used in a vision system for humanoid robots without any complex procedures. To achieve this, we introduce an extended minimum variance approach for head-eye calibration using surface normal vectors instead of 3D point sets. The presented method considers both positional and orientational error variances between visual measurements and kinematic data in head-eye calibration. Experiments using both synthetic and real data show the accuracy and efficiency of the proposed method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...