Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetol Metab Syndr ; 16(1): 149, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970135

RESUMO

Diabetes mellitus (DM) is a progressive, chronic metabolic disorder characterized by high oxidative stress, which can lead to cardiac damage. Methionine sulfoxylation (MetO) of proteins by excessive reactive oxygen species (ROS) can impair the basic functionality of essential cellular proteins, contributing to heart failure. Methionine sulfoxide reductase B2 (MsrB2) can reverse oxidation induced MetO in mitochondrial proteins, so we investigated its role in diabetic cardiomyopathy. We observed that DM-induced heart damage in diabetic mice model is characterized by increased ROS, increased protein MetO with mitochondria structural pathology, and cardiac fibrosis. In addition, MsrB2 was significantly increased in mouse DM cardiomyocytes, supporting the induction of a protective process. Further, MsrB2 directly induces Parkin and LC3 activation (mitophagy markers) in cardiomyocytes. In MsrB2, knockout mice displayed abnormal electrophysiological function, as determined by ECG analysis. Histological analysis confirmed increased cardiac fibrosis and disrupted cardiac tissue in MsrB2 knockout DM mice. We then corroborated our findings in human DM heart samples. Our study demonstrates that increased MsrB2 expression in the heart protects against diabetic cardiomyopathy.

2.
Small ; 18(18): e2107620, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35373528

RESUMO

By controlling the configuration of polymorphic phases in high-k Hf0.5 Zr0.5 O2 thin films, new functionalities such as persistent ferroelectricity at an extremely small scale can be exploited. To bolster the technological progress and fundamental understanding of phase stabilization (or transition) and switching behavior in the research area, efficient and reliable mapping of the crystal symmetry encompassing the whole scale of thin films is an urgent requisite. Atomic-scale observation with electron microscopy can provide decisive information for discriminating structures with similar symmetries. However, it often demands multiple/multiscale analysis for cross-validation with other techniques, such as X-ray diffraction, due to the limited range of observation. Herein, an efficient and automated methodology for large-scale mapping of the crystal symmetries in polycrystalline Hf0.5 Zr0.5 O2 thin films is developed using scanning probe-based diffraction and a hybrid deep convolutional neural network at a 2 nm2 resolution. The results for the doped hafnia films are fully proven to be compatible with atomic structures revealed by microscopy imaging, not requiring intensive human input for interpretation.


Assuntos
Aprendizado Profundo , Humanos , Difração de Raios X
3.
Sci Adv ; 8(11): eabm3962, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302844

RESUMO

Scaling down of semiconductor devices requires high-k dielectric materials to continue lowering the operating voltage of field-effect transistors (FETs) and storing sufficient charge on a smaller area. Here, we investigate the dielectric properties of epitaxial BaHf0.6Ti0.4O3 (BHTO), an alloy of perovskite oxide barium hafnate (BaHfO3) and barium titanate (BaTiO3). We found the dielectric constant, the breakdown field, and the leakage current to be 150, 5.0 megavolts per centimeter (MV cm-1), and 10-4 amperes per square centimeter at 2 MV cm-1, respectively. The results suggest that two-dimensional (2D) carrier density of more than n2D = 1014 per square centimeter (cm-2) could be modulated by the BHTO gate oxide. We demonstrate an n-type accumulation mode FET and direct suppression of more than n2D = 1014 cm-2 via an n-type depletion-mode FET. We attribute the large dielectric constant, high breakdown field, and low leakage current of BHTO to the nanometer scale stoichiometric modulation of hafnium and titanium.

4.
Adv Mater ; 32(42): e2003542, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32935911

RESUMO

For practical device applications, monolayer transition metal dichalcogenide (TMD) films must meet key industry needs for batch processing, including the high-throughput, large-scale production of high-quality, spatially uniform materials, and reliable integration into devices. Here, high-throughput growth, completed in 12 min, of 6-inch wafer-scale monolayer MoS2 and WS2 is reported, which is directly compatible with scalable batch processing and device integration. Specifically, a pulsed metal-organic chemical vapor deposition process is developed, where periodic interruption of the precursor supply drives vertical Ostwald ripening, which prevents secondary nucleation despite high precursor concentrations. The as-grown TMD films show excellent spatial homogeneity and well-stitched grain boundaries, enabling facile transfer to various target substrates without degradation. Using these films, batch fabrication of high-performance field-effect transistor (FET) arrays in wafer-scale is demonstrated, and the FETs show remarkable uniformity. The high-throughput production and wafer-scale automatable transfer will facilitate the integration of TMDs into Si-complementary metal-oxide-semiconductor platforms.

5.
J Nanosci Nanotechnol ; 16(5): 4906-13, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483844

RESUMO

Native oxide removal prior to poly-Si contact and epitaxial growth of Si is the most critical technology to ensure process and device performances of poly-Si plugs and selective epitaxial growth (SEG) layers for DRAM, flash memory, and logic device. Recently, dry cleaning process for interfacial oxide removal has attracted a world-wide attention due to its superior passivation properties to conventional wet cleaning processes. In this study, we investigated the surface states of Si substrate during and after dry cleaning process, and the role of atomic elements including fluorine and hydrogen on the properties of subsequent deposited silicon layer using SIMS, XPS, and TEM analysis. The controlling of residual fluorine on the Si surface after dry cleaning is a key factor for clean interface. The mechanism of native oxide re-growth caused by residual fluorine after dry cleaning is proposed based on analytical results.

6.
Nanoscale ; 7(30): 12913-20, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26165952

RESUMO

The convenient synthesis of one-dimensional nanostructures of chalcogenide compounds with a visible band-gap is an essential research topic in developing next-generation photoelectronic devices. In particular, the design of a theoretically predictable synthesis process provides great flexibility and has a considerable ripple effect in nanotechnology. In this study, a novel rational growth approach is designed using the spinodal decomposition phenomenon for the synthesis of the Sb2Se3 nanowires, which is based on the thermodynamic phase diagram. Using a stacked elemental layer (Sb/Sb-Se/Se) and heat treatment at 623 K for 30 min under an N2 atmosphere, the vertically inclined one-dimensional nanostructures are experimentally demonstrated. An additional annealing process at 523 K in a vacuum effectively removed excess Se elements due to their high vapor pressure, resulting in highly dense single crystal Sb2Se3 nanowire arrays. Adaption of our synthesis approach enables significantly improved photocurrent generation in the vertically stacked structure (glass/ITO/Sb2Se3 nanowires/ITO/PEN) from 6.4 (dark) to under 690 µA (at 3 V under AM 1.5G). In addition, a photoelectrochemical test demonstrated their p-type conductivity and robust photocorrosion performance in 0.5 M H2SO4.

7.
Chem Commun (Camb) ; 49(98): 11479-81, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24121672

RESUMO

Using in situ transmission electron microscopy, we demonstrated that gold nanoparticles are unified via "oriented attachment" assisted either by nanoparticle rotation or grain boundary migration at the attachment interface. We also observed that the combined nanoparticle changes shape with stable facet planes via surface diffusion, along with recrystallization.

8.
Microsc Microanal ; 19 Suppl 5: 145-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23920194

RESUMO

The growth of high-quality indium (In)-rich In(X)Ga(1-X)N alloys is technologically important for applications to attain highly efficient green light-emitting diodes and solar cells. However, phase separation and composition modulation in In-rich In(X )Ga(1-X)N alloys are inevitable phenomena that degrade the crystal quality of In-rich In(X)Ga(1-X)N layers. Composition modulations were observed in the In-rich In(X)Ga(1-X)N layers with various In compositions. The In composition modulation in the In X Ga1-X N alloys formed in samples with In compositions exceeding 47%. The misfit strain between the InGaN layer and the GaN buffer retarded the composition modulation, which resulted in the formation of modulated regions 100 nm above the In(0.67)Ga(0.33)N/GaN interface. The composition modulations were formed on the specific crystallographic planes of both the {0001} and {0114} planes of InGaN.

9.
Sci Rep ; 2: 588, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905319

RESUMO

One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with ~90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence.


Assuntos
Nanoestruturas/química , Óxidos/química , Técnicas Eletroquímicas , Desenho de Equipamento , Nanoestruturas/ultraestrutura , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...