Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1194058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342139

RESUMO

The stability of cultivation and production in terms of crop yield has been threatened by climate change due to global warming. Pre-harvest sprouting (PHS) is a threat to crops, especially staple foods, including rice, because of reductions in yield and quality. To address the problem of precocious germination before harvest, we performed quantitative trait loci (QTL) analysis for PHS using F8 RILs populations derived from japonica weedy rice in Korea. QTL analysis revealed that two stable QTLs, qPH7 and qPH2, associated with PHS resistance were identified on chromosomes 7 and 2, respectively, explaining approximately 38% of the phenotypic variation. The QTL effect in the tested lines significantly decreased the degree of PHS, based on the number of QTLs included. Through fine mapping for main QTL qPH7, the region for the PHS was found to be anchored within 23.575-23.785 Mbp on chromosome 7 using 13 cleaved amplified sequence (CAPS) markers. Among 15 open reading frames (ORFs) within the detected region, one ORF, Os07g0584366, exhibited upregulated expression in the resistant donor, which was approximately nine times higher than that of susceptible japonica cultivars under PHS-inducing conditions. Japonica lines with QTLs related to PHS resistance were developed to improve the characteristics of PHS and design practical PCR-based DNA markers for marker-assisted backcrosses of many other PHS-susceptible japonica cultivars.

2.
Plants (Basel) ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176824

RESUMO

Rice is a major crop, providing calories and food for most of the world's population. Currently, the global population is rapidly increasing, and securing a yield of rice that can satisfy everyone is an ongoing challenge. The yield of rice can be increased by controlling 1000-grain weight as one of the important determining factors. Grain length, grain width, grain thickness, and 1000-grain weight, which determine grain size, are controlled by QTLs. To identify QTLs related to grain size, we screened and then mapped 88 RIL individuals derived from a cross between JJ625LG, which has a long grain size, long spindle-shaped grains, and low 1000-grain weight, and Namchan, which has short grains with round shape and heavy 1000-grain weight. In 2021 and 2022, 511 SNP markers were used to map QTLs related to grain size to a physical map. The QTLs found to be related to grain size are evenly distributed on chromosomes 2, 3, 5, 10, and 11. The mapping results also show that the QTLs qGl3-2, qRlw3, and qRlw3-2 of chromosome 3, and qGt5 and qRlw5 of chromosome 5 are, respectively, associated with GS3 and qSW5, which are the major genes previously cloned and found to be related to grain size. In addition, qGw10 and qGw10-1, which were additionally detected in this study, were found to be associated with Os10g0525200 (OsCPq10), a potential candidate gene involved in controlling grain size. This gene codes for a cytochrome P450 family protein and is reported to have a positive effect on grain size by interacting with proteins related to mechanisms determining grain size. In particular, OsCPq10 was screened in the same identified QTL region for 2 consecutive years, which is expected to have a positive effect on grain size. These results will be helpful for breeding elite rice cultivars with high yields through additional fine mapping related to grain size.

3.
Plants (Basel) ; 12(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050138

RESUMO

Grain shape is one of the key factors deciding the yield product and the market value as appearance quality in rice (Oryza sativa L.). The grain shape of japonica cultivars in Korea is quite monotonous because the selection pressure of rice breeding programs works in consideration of consumer preference. In this study, we identified QTLs associated with grain shape to improve the variety of grain shapes in Korean cultivars. QTL analysis revealed that eight QTLs related to five tested traits were detected on chromosomes 2, 5, and 10. Among them, three QTLs-qGL2 (33.9% of PEV for grain length), qGW5 (64.42% for grain width), and qGT10 (49.2% for grain thickness)-were regarded as the main effect QTLs. Using the three QTLs, an ideal QTL combination (qGL2P + qGW5P + qGT10B) could be constructed on the basis of the accumulated QTL effect without yield loss caused by the change in grain shape in the population. In addition, three promising lines with a slender grain type were selected as a breeding resource with a japonica genetic background based on the QTL combination. The application of QTLs detected in this study could improve the grain shape of japonica cultivars without any linkage drag or yield loss.

4.
Plants (Basel) ; 11(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684177

RESUMO

Bacterial blight (BB) disease, caused by Xanthomonas oryzae pv. oryzae (Xoo), is among the major factors that can cause rice yields to decrease. To address BB disease, researchers have been looking for ways to change pesticides and cultivation methods, but developing resistant cultivars is the most effective method. However, the resistance and genetic factors of cultivars may be destroyed due to the emergence of new Xoo species caused by recent and rapid climate changes. Therefore, breeders need to identify resistance genes that can be sustained during unpredictable climate changes and utilized for breeding. Here, qBBR11, a quantitative trait locus (QTL) for resistance to BB disease, was detected in KJ (Korea Japonica varieties) 11_067 to KJ11_068 on chromosome 11 in a population derived by crossing JJ (Jeonju) 623 and HR(High resistant)27,195, which possess similar genetic backgrounds but different degrees of resistance to BB disease. qBBR11 was reduced from 18.49-18.69 Mbp of chromosome 11 to 200 kbp segment franked. In this region, 16 candidate genes were detected, and we identified 24 moderate-impact variations and four high-impact variations. In particular, high-impact variations were detected in Os11g0517800 which encode the domain region of GCN2 which is the eIF-2-alpha kinase associated with the resistance of abiotic/biotic stress in rice. In JJ623, which is moderately resistant to BB disease, a stop codon was created due to single nucleotide polymorphism (SNP). Therefore, compared with HR27195, JJ623 has weaker resistance to BB disease, though the two have similar genetic backgrounds. The results suggest that variation in the qBBR11 region regulates an important role in improving resistance to BB diseases, and qBBR11 is useful in providing an important resource for marker-assisted selection to improve mechanisms of resistance to BB disease.

5.
Rice (N Y) ; 14(1): 99, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874500

RESUMO

BACKGROUND: The exploitation of useful genes through interspecific and intersubspecific crosses has been an important strategy for the genetic improvement of rice. Postzygotic reproductive isolation routinely occurs to hinder the growth of pollen or embryo sacs during the reproductive development of the wide crosses. RESULT: In this study, we investigated the genetic relationship between the hybrid breakdown of the population and transferred resistance genes derived from wide crosses using a near-isogenic population composed of 225 lines. Five loci (qSS12, qSS8, qSS11, ePS6-1, and ePS6-2) associated with spikelet fertility (SF) were identified by QTL and epistatic analysis, and two out of five epistasis interactions were found between the three QTLs (qSS12, qSS8 and qSS11) and background marker loci (ePS6-1 and ePS6-2) on chromosome 6. The results of the QTL combinations suggested a genetic model that explains most of the interactions between spikelet fertility and the detected loci with positive or negative effects. Moreover, the major-effect QTLs, qSS12 and qSS8, which exhibited additive gene effects, were narrowed down to 82- and 200-kb regions on chromosomes 12 and 8, respectively. Of the 13 ORFs present in the target regions, Os12g0589400 and Os12g0589898 for qSS12 and OS8g0298700 for qSS8 induced significantly different expression levels of the candidate genes in rice at the young panicle stage. CONCLUSION: The results will be useful for obtaining a further understanding of the mechanism causing the hybrid breakdown of a wide cross and will provide new information for developing rice cultivars with wide compatibility.

6.
Front Plant Sci ; 9: 1827, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619400

RESUMO

Adaptation of temperate japonica rice varieties to tropical regions is impeded by extremely early flowering probably due to photoperiod change from long to short. However, constant breeding efforts led to development of temperate japonica varieties adapted to tropical/subtropical regions, but the genetic factor underlying this is still elusive. We analyzed the 45 diverse rice accessions and 12 tropical-adapted temperate japonica lines for the allele types of seven major flowering genes Hd1, OsPPR37, DTH8, Ghd7, Ehd1, RFT1, and Hd3a and flowering time under three different field conditions in temperate and tropical locations. The accessions originated from the tropical/subtropical regions preferred the non-functional alleles of Hd1 and not other flowering genes. The genetic effect analysis of each gene showed that only the functional Hd1 caused early flowering in the tropical location. All 12 temperate japonica breeding lines adapted to the tropics possessed the loss-of-function alleles of Hd1 with no change of other flowering genes compared to common Korean temperate japonica varieties. A phylogenetic analysis using 2,918 SNP data points revealed that the genome status of the 12 breeding lines were very similar to Korean temperate japonica varieties. These results indicate that the functional Hd1 alleles of temperate japonica varieties induced extremely early flowering in the tropics and the non-functional hd1 alleles brought about the adaptation of temperate japonica rice to tropical regions.

7.
J Agric Food Chem ; 56(1): 235-40, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18081248

RESUMO

Black rice ( Oryza sativa L.), an aromatic specialty rice popular in Asia, has a unique flavor, the volatile chemistry of which has not been reported. The objectives of this research were to study volatile profiles of cooked black rice and to characterize the odor-active compounds. Thirty-five volatile compounds were identified by gas chromatography-mass spectrometry using a dynamic headspace system with Tenax trapping. Aldehydes and aromatics were quantitatively in the greatest abundance, accounting for 80.1% of total relative concentration of volatiles. The concentration of 2-acetyl-1-pyrroline (2-AP) was high, exceeded only by hexanal, nonanal, and 2-pentylfuran. A total of 25 odor-active compounds, determined by gas chromatography-olfactometry, were applied to principal component analysis, demonstrating significant differences between a black and a traditional white rice cultivar in terms of aroma and explaining 93.0% of the total variation. 2-AP, guaiacol, indole, and p-xylene largely influenced the difference between the aroma in cooked black and white rice. 2-AP and guaiacol were major contributors to the unique character of black rice based on odor thresholds, relative concentrations, and olfactometry.


Assuntos
Temperatura Alta , Odorantes/análise , Oryza/química , Cromatografia Gasosa , Cromatografia Gasosa-Espectrometria de Massas , Guaiacol/análise , Humanos , Pirróis/análise , Sementes/química , Olfato , Volatilização
8.
Genome Res ; 14(10A): 1924-31, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15466290

RESUMO

Maize (Zea mays L. ssp. mays), one of the most important agricultural crops in the world, originated by hybridization of two closely related progenitors. To investigate the fate of its genes after tetraploidization, we analyzed the sequence of five duplicated regions from different chromosomal locations. We also compared corresponding regions from sorghum and rice, two important crops that have largely collinear maps with maize. The split of sorghum and maize progenitors was recently estimated to be 11.9 Mya, whereas rice diverged from the common ancestor of maize and sorghum approximately 50 Mya. A data set of roughly 4 Mb yielded 206 predicted genes from the three species, excluding any transposon-related genes, but including eight gene remnants. On average, 14% of the genes within the aligned regions are noncollinear between any two species. However, scoring each maize region separately, the set of noncollinear genes between all four regions jumps to 68%. This is largely because at least 50% of the duplicated genes from the two progenitors of maize have been lost over a very short period of time, possibly as short as 5 million years. Using the nearly completed rice sequence, we found noncollinear genes in other chromosomal positions, frequently in more than one. This demonstrates that many genes in these species have moved to new chromosomal locations in the last 50 million years or less, most as single gene events that did not dramatically alter gene structure.


Assuntos
Genoma de Planta , Zea mays/genética , Cromossomos Artificiais Bacterianos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...