Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(4): e2304735, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030415

RESUMO

An in situ measurement of a CO2 reduction reaction (CO2 RR) in Cu-phthalocyanine (CuPC) molecules adsorbed on an Au(111) surface is performed using electrochemical scanning tunneling microscopy. One intriguing phenomenon monitored in situ during CO2 RR is that a well-ordered CuPC adlayer is formed into an unsuspected nanocluster via molecular restructuring. At an electrode potential of -0.7 V versus Ag/AgCl, the Au surface is covered mainly with the clusters, showing restructuring-induced CO2 RR catalytic activity. Using a measurement of X-ray photoelectron spectroscopy, it is revealed that the nanocluster represents a Cu complex with its formation mechanism. This work provides an in situ observation of the restructuring of the electrocatalyst to understand the surface-reactive correlations and suggests the CO2 RR catalyst works at a relatively low potential using the CuPC-derived Cu nanoclusters as active species.

2.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614285

RESUMO

Copper-based catalysts have different catalytic properties depending on the oxidation states of Cu. We report operando observations of the Cu(111) oxidation processes using near-ambient pressure scanning tunneling microscopy (NAP-STM) and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). The Cu(111) surface was chemically inactive to water vapor, but only physisorption of water molecules was observed by NAP-STM. Under O2 environments, dry oxidation started at the step edges and proceeded to the terraces as a Cu2O phase. Humid oxidation of the H2O/O2 gas mixture was also promoted at the step edges to the terraces. After the Cu2O covered the surface under humid conditions, hydroxides and adsorbed water layers formed. NAP-STM observations showed that Cu2O was generated at lower steps in dry oxidation with independent terrace oxidations, whereas Cu2O was generated at upper steps in humid oxidation. The difference in the oxidation mechanisms was caused by water molecules. When the surface was entirely oxidized, the diffusion of Cu and O atoms with a reconstruction of the Cu2O structures induced additional subsurface oxidation. NAP-XPS measurements showed that the Cu2O thickness in dry oxidation was greater than that in humid oxidation under all pressure conditions.


Assuntos
Cobre , Vapor , Oxirredução , Cobre/química , Gases
3.
Sci Rep ; 10(1): 16166, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999433

RESUMO

The homochirality of amino acids in living organisms is one of the great mysteries in the phenomena of life. To understand the chiral recognition of amino acids, we have used scanning tunnelling microscopy to investigate the self-assembly of molecules of the amino acid tryptophan (Trp) on Au(111). Earlier experiments showed only homochiral configurations in the self-assembly of amino acids, despite using a mixture of the two opposite enantiomers. In our study, we demonstrate that heterochiral configurations can be favored energetically when L- and D-Trp molecules are mixed to form self-assembly on the Au surface. Using density functional theory calculations, we show that the indole side chain strongly interacts with the Au surface, which reduces the system effectively to two-dimension, with chiral recognition disabled. Our study provides important insight into the recognition of the chirality of amino acid molecules in life.

4.
Materials (Basel) ; 12(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965612

RESUMO

Despite their excellent electrical and optical properties, Ag nanowires (NWs) suffer from oxidation when exposed to air for several days. In this study, we synthesized a Cs carbonate-incorporated overcoating layer by spin-coating and ultraviolet curing to prevent the thermal oxidation of Ag NWs. Cs incorporation increased the decomposition temperature of the overcoating layer, thus enhancing its thermal resistance. The effects of the Cs carbonate-incorporated overcoating layer on the optoelectrical properties and stability of Ag NWs were investigated in detail. The Ag NW electrode reinforced with the Cs carbonate-incorporated overcoating layer exhibited excellent thermal oxidation stability after exposure to air for 55 days at 85 °C and a relative humidity of 85%. The novel overcoating layer synthesized in this study is a promising passivation layer for Ag NWs against thermal oxidation under ambient conditions. This overcoating layer can be applied in large-area optoelectronic devices based on Ag NW electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...