Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679608

RESUMO

In this study, two thin rectangular PVDFs were installed in the form of a cantilever on a FTEH (funnel-type energy harvester), and a CTEH (cymbal-type energy harvester) was fabricated in a form coupled to the upper part of the support. As a result of measuring the energy harvesting sensitivity according to the installation direction of the CTEH, a high voltage was measured in the structure installed on top of the support across all flow velocity conditions. A composite structure PVDF energy harvester combining CTEH and FTEH was fabricated and the amount of power generated was measured. As a result of measuring the open-circuit voltage of the PVDF energy harvester device with a composite structure to which the optimum resistance of CTEH of 241 kΩ and the optimum resistance of FTEH of 1474 kΩ were applied at a flow rate of 0.25 m/s, the output voltage compared to the RMS average value was 7 to 8.5 times higher for FTEH than for CTEH. When the flow rate was 0.5 m/s, the electrical energy charged for 500 s was measured as 2.0 µWs to 2.5 µWs, and when the flow speed was 0.75 m/s, it reached 2.5 µWs when charged for 300 s, generating the same amount when the flow rate increased by 50%. The time to do it was reduced by 66.7%.


Assuntos
Eletricidade , Fenômenos Físicos
2.
Micromachines (Basel) ; 13(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35457886

RESUMO

For the purpose of stably supplying electric power to the underwater wireless sensor, the energy harvesting technology in which a voltage is obtained by generating displacement in a piezoelectric material using flow-induced vibration is one of the most attractive research fields. The funnel type energy harvester (FTEH) with PVDF proposed in this study is an energy harvester in which the inlet has a larger cross-sectional area than the outlet and a spiral structure is inserted to generate a vortex flow at the inlet. Based on numerical analysis, when PVDF with L = 100 mm and t = 1 mm was used, the electric power of 39 µW was generated at flow velocity of 0.25 m/s. In experiment the average RMS voltage of FTEH increased by 0.0209 V when the flow velocity increased by 1 m/s. When measured at 0.25 m/s flow velocity for 25 s, it was shown that voltage doubler rectifier (VDR) generated a voltage of 133.4 mV, 2.25 times larger than that of full bridge rectifier (FBR), and the energy charged in the capacitor was 44.3 nJ, 14% higher in VDR than that of the FBR. In addition, the VDR can deliver power of 17.75 µW for 1 kΩ load. It is shown that if the voltage generated by the FTEH using the flow velocity is stored using the VDR electric circuit, it will greatly contribute to the stable power supply of the underwater wireless sensor.

3.
Sensors (Basel) ; 23(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616739

RESUMO

Polyvinylidene fluoride (PVDF) is an emerging method for energy harvesting by fluid motion with superior flexibility. However, the PVDF energy harvester, which has a high internal impedance and generates a low voltage, has a large power transmission loss. To overcome this problem, we propose an impedance-coupled voltage-boosting circuit (IC-VBC) that reduces the impedance of the PVDF energy harvester and boosts the voltage. SPICE simulation results show that IC-VBC reduces the impedance of the PVDF energy harvester from 4.3 MΩ to 320 kΩ and increases the output voltage by 2.52 times. We successfully charged lithium-ion batteries using the PVDF energy harvester and IC-VBC with low-speed wind power generation.

4.
Sensors (Basel) ; 19(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653036

RESUMO

In this paper, a cylindrical cavity sensor based on microwave resonant theory is proposed to distinguish between various driveability index gasolines under temperature variations. The working principle of the proposed sensor is based on the fact that the change in permittivity of gasoline samples inside cavity sensor will also cause a change in resonant frequency. The proposed sensor has good sensitivity in terms of resonant frequency separation, which enables it to capture the minute permittivity changes and distinguish different gasolines. By using a normal gasoline permittivity of 2.15 and changing sensor dimension parameters, the sensor was designed by high-frequency structure simulator (HFSS). The designed sensor has a resonant frequency of 7.119 GHz for the TM012 mode with a 19.2 mm radius, a 35 mm height, and one-port coupling probe of 8 mm height. The proposed cylindrical cavity sensor shows advantages of excellent resonant characteristics of small cavity size and small sample amount. To optimize and verify the parameters of the sensor, many experiments have been carried out using HFSS and a vector network analyzer (VNA). Consequently, the proposed sensor is proven to be robust to temperature changes in terms of resonant frequency separation. The minimum frequency separation to distinguish gasoline samples is found to be larger than 29 MHz with reflection coefficients under -11 dB for temperature changes from -35 °C to 0 °C. The consistency of experimental and theoretical results also are presented, which guarantees accuracy of the sensor for the distinction of gasoline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...