Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675102

RESUMO

Extracellular vesicles play an important role in intercellular communication, with the potential to serve as biomaterials for nanocarriers. Combining such extracellular vesicles and liposomes results in advanced drug delivery carriers. In this study, we attempted to fabricate hybrid vesicles using a membrane fusion method and incorporated an anticancer drug. As a result, we successfully prepared nanosized uniform hybrid vesicles and evaluated their physicochemical characteristics and intracellular uptake mechanisms via endocytosis in various cell lines. Compared to liposomes, the hybrid vesicles showed better physical properties and a relatively higher reduction in cell viability, which was presumably dependent on the specific cell type. These findings suggest that fusion-based hybrid vesicles offer a novel strategy for delivering therapeutic agents and provide insights into the types of extracellular vesicles that are useful in fabricating hybrid vesicles to develop an advanced drug delivery system.

3.
Nano Converg ; 10(1): 42, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695365

RESUMO

Nanozymes mimic the function of enzymes, which drive essential intracellular chemical reactions that govern biological processes. They efficiently generate or degrade specific biomolecules that can initiate or inhibit biological processes, regulating cellular behaviors. Two approaches for utilizing nanozymes in intracellular chemistry have been reported. Biomimetic catalysis replicates the identical reactions of natural enzymes, and bioorthogonal catalysis enables chemistries inaccessible in cells. Various nanozymes based on nanomaterials and catalytic metals are employed to attain intended specific catalysis in cells either to mimic the enzymatic mechanism and kinetics or expand inaccessible chemistries. Each nanozyme approach has its own intrinsic advantages and limitations, making them complementary for diverse and specific applications. This review summarizes the strategies for intracellular catalysis and applications of biomimetic and bioorthogonal nanozymes, including a discussion of their limitations and future research directions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37751467

RESUMO

The adoption of dynamic mechanomodulation to regulate cellular behavior is an alternative to the use of chemical drugs, allowing spatiotemporal control. However, cell-selective targeting of mechanical stimuli is challenging due to the lack of strategies with which to convert macroscopic mechanical movements to different cellular responses. Here, we designed a nanoscale vibrating surface that controls cell behavior via selective repetitive cell deformation based on a poroelastic cell model. The vibrating indentations induce repetitive water redistribution in the cells with water redistribution rates faster than the vibrating rate; however, in the opposite case, cells perceive the vibrations as a one-time stimulus. The selective regulation of cell-cell adhesion through adjusting the frequency of nanovibration was demonstrated by suppression of cadherin expression in smooth muscle cells (fast water redistribution rate) with no change in vascular endothelial cells (slow water redistribution rate). This technique may provide a new strategy for cell-type-specific mechanical stimulation.

5.
Nanomaterials (Basel) ; 13(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446411

RESUMO

Using renewable photocatalysts for pollutant degradation represents a promising approach to addressing environmental water challenges by harnessing solar energy without additional energy consumption. However, for the practical use of photocatalysts, it is necessary to improve catalyst efficiency, considering cost and biocompatibility. In this study, we developed a new superabsorbent photocatalyst for the degradation of organic dyes in water. Our photocatalyst comprises halloysite nanotubes (HNTs) with a large outer diameter and Si-O and Al-O groups on the outer and inner surfaces, respectively; graphene oxide (GO) possessing numerous sp2 bonds and light-conductive properties; and ZnO, which can degrade organic molecules via a photon source. By exploiting the superabsorbent properties of GOs for organic dyes and stabilizing ZnO nanoparticles on HNTs to inhibit aggregation, our photocatalysts demonstrated significantly improved degradability compared to ZnO nanoparticles alone and combinations of ZnO with HNTs or GO. The structural characteristics of the nanocomposites were characterized using SEM, EDX, Raman spectroscopy, and XRD. Their enhanced photocatalytic activity was demonstrated by the degradation of rhodamine b in water, showing 95% photodegradation under UV illumination for 60 min, while the ZnO nanoparticles showed only 56% dye degradation under the same condition. Additionally, the degradation rate was enhanced by four times. Furthermore, the catalysts maintained their initial activity with no significant loss after four uses, showing their potential for practical implementation in the mass purification of wastewater.

6.
Adv Healthc Mater ; 12(4): e2201825, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36326169

RESUMO

Key to the widespread and secure application of genome editing tools is the safe and effective delivery of multiple components of ribonucleoproteins (RNPs) into single cells, which remains a biological barrier to their clinical application. To overcome this issue, a robust RNP delivery platform based on a biocompatible sponge-like silica nanoconstruct (SN) for storing and directly delivering therapeutic RNPs, including Cas9 nuclease RNP (Cas9-RNP) and base editor RNP (BE-RNP) is designed. Compared with commercialized material such as lipid-based methods, up to 50-fold gene deletion and 10-fold base substitution efficiency is obtained with a low off-target efficiency by targeting various cells and genes. In particular, gene correction is successfully induced by SN-based delivery through intravenous injection in an in vivo solid-tumor model and through subretinal injection in mouse eye. Moreover, because of its low toxicity and high biodegradability, SN has negligible effect on cellular function of organs. As the engineered SN can overcome practical challenges associated with therapeutic RNP application, it is strongly expected this platform to be a modular RNPs delivery system, facilitating in vivo gene deletion and editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Ribonucleoproteínas , Dióxido de Silício , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Nanoestruturas/administração & dosagem , Dióxido de Silício/administração & dosagem , Dióxido de Silício/farmacologia
7.
Nanomaterials (Basel) ; 12(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35889586

RESUMO

Photocatalysis driven by natural sunlight is an attractive approach to removing pollutants from wastewater. Although TiO2-based photocatalysts using various support nano-materials with high catalytic activity and reusability have been developed for purifying wastewater, the centrifugal separation methods used for the nanocatalysts limit their use for treating large amounts of water. Here, we prepared a TiO2 nano-catalyst supported on a halloysite nanotube (HNT)-encapsulated alginate capsule (TiO2@HNT/Alcap) to recapture the catalysts rapidly without centrifugation. The structure of TiO2@HNT/Alcap was characterized by X-ray diffraction, SEM, and TGA. In our system, the combination of HNTs and alginate capsules (Alcaps) improved the efficiency of adsorption of organic pollutants to TiO2, and their milli = meter scale structure allowed ultra-fast filtering using a strainer. The TiO2@HNT/Alcaps showed ~1.7 times higher adsorption of rhodamine B compared to empty alginate capsules and also showed ~10 and ~6 times higher degradation rate compared to the HNT/Alcaps and TiO2/Alcaps, respectively.

8.
J Am Chem Soc ; 144(12): 5503-5516, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35235326

RESUMO

Biological nanomachines, including proteins and nucleic acids whose function is activated by conformational changes, are involved in every biological process, in which their dynamic and responsive behaviors are controlled by supramolecular recognition. The development of artificial nanomachines that mimic the biological functions for potential application as therapeutics is emerging; however, it is still limited to the lower hierarchical level of the molecular components. In this work, we report a synthetic machinery nanostructure in which actuatable molecular components are integrated into a hierarchical nanomaterial in response to external stimuli to regulate biological functions. Two nanometers core-sized gold nanoparticles are covered with ligand layers as actuatable components, whose folding/unfolding motional response to the cellular environment enables the direct penetration of the nanoparticles across the cellular membrane to disrupt intracellular organelles. Furthermore, the pH-responsive conformational movements of the molecular components can induce the apoptosis of cancer cells. This strategy based on the mechanical motion of molecular components on a hierarchical nanocluster would be useful to design biomimetic nanotoxins.


Assuntos
Fenômenos Biológicos , Nanopartículas Metálicas , Nanoestruturas , Membrana Celular , Ouro , Nanoestruturas/toxicidade
9.
Nano Lett ; 22(1): 50-57, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962130

RESUMO

SARS-CoV-2 variants are of particular interest because they can potentially increase the transmissibility and virulence of COVID-19 or reduce the effectiveness of available vaccines. However, screening SARS-CoV-2 variants is a challenge because biosensors target viral components that can mutate. One promising strategy is to screen variants via angiotensin-converting enzyme 2 (ACE2), a virus receptor shared by all known SARS-CoV-2 variants. Here we designed a highly sensitive and portable COVID-19 screening biosensor based on the virus receptor. We chose a dual-gate field-effect transistor to overcome the low sensitivity of virus-receptor-based biosensors. To optimize the biosensor, we introduced a synthetic virus that mimics the important features of SARS-CoV-2 (size, bilayer structure, and composition). The developed biosensor successfully detected SARS-CoV-2 in 20 min and showed sensitivity comparable to that of molecular diagnostic tests (∼165 copies/mL). Our results indicate that a virus-receptor-based biosensor can be an effective strategy for screening infectious diseases to prevent pandemics.


Assuntos
Técnicas Biossensoriais , COVID-19 , SARS-CoV-2/isolamento & purificação , Humanos , Receptores Virais , Glicoproteína da Espícula de Coronavírus
10.
J Mater Chem B ; 9(14): 3143-3152, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33586760

RESUMO

Drug resistance is a major cause of treatment failure for small-molecule cancer chemotherapies, despite the advances in combination therapies, drug delivery systems, epigenetic drugs, and proteolysis-targeting chimeras. Herein, we report the use of a drug resistance-free cytotoxic nanodrug as an alternative to small-molecule drugs. The present nanodrugs comprise 2 nm core gold nanoparticles (AuNPs) covered completely with multivalent hydrocarbon chains to a final diameter of ∼10 nm as single drug molecules. This hydrophobic drug-platform was delivered in composite form (∼35 nm) with block-copolymer like other small-molecular drugs. Upon uptake by cells, the nanodrugs enhanced the intracellular levels of reactive oxygen species and induced apoptosis, presumably reflecting multivalent interactions between aliphatic chains and intracellular biomolecules. No resistance to our novel nanodrug was observed following multiple treatment passages and the potential for use in cancer therapy was verified in a breast cancer patient-derived xenograft mouse model. These findings provide insight into the use of nano-scaled compounds as agents that evade drug resistance to cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ouro/química , Ouro/farmacologia , Humanos , Hidrocarbonetos/química , Hidrocarbonetos/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Nanopartículas Metálicas/química , Camundongos , Camundongos Nus , Tamanho da Partícula , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
11.
ACS Nano ; 15(3): 4054-4065, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33296173

RESUMO

Screening for prostate cancer relies on the serum prostate-specific antigen test, which provides a high rate of false positives (80%). This results in a large number of unnecessary biopsies and subsequent overtreatment. Considering the frequency of the test, there is a critical unmet need of precision screening for prostate cancer. Here, we introduced a urinary multimarker biosensor with a capacity to learn to achieve this goal. The correlation of clinical state with the sensing signals from urinary multimarkers was analyzed by two common machine learning algorithms. As the number of biomarkers was increased, both algorithms provided a monotonic increase in screening performance. Under the best combination of biomarkers, the machine learning algorithms screened prostate cancer patients with more than 99% accuracy using 76 urine specimens. Urinary multimarker biosensor leveraged by machine learning analysis can be an important strategy of precision screening for cancers using a drop of bodily fluid.


Assuntos
Inteligência Artificial , Neoplasias da Próstata , Biomarcadores Tumorais , Biópsia , Detecção Precoce de Câncer , Humanos , Masculino , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico
12.
Addict Biol ; 26(4): e12981, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33135332

RESUMO

Novel psychoactive substances remain the popular recreational drugs of use over the years. They continue to bypass government restrictions due to their synthesis and modifications. Recent additions to the lists are the 4-F-PCP and 4-Keto-PCP, analogs of the drug phencyclidine (PCP) known to induce adverse effects and abuse potential. However, studies on the abuse potential of 4-F-PCP and 4-Keto-PCP remain scarce. The rewarding and reinforcing effects of the drugs were assessed using conditioned place preference (CPP), self-administration, and locomotor sensitization tests. Dopamine (DA) receptor antagonists (SCH23390 and haloperidol) were administered during CPP to evaluate the involvement of the mesolimbic dopaminergic system. DA-related protein expression in the nucleus accumbens (NAcc) and ventral tegmental area (VTA) was measured. Additionally, phosphorylated cyclic-adenosine monophosphate-activated protein (AMP) response element-binding (p-CREB) protein, deltaFosB (∆FosB), and brain-derived neurotrophic factor (BDNF) protein levels in the NAcc were measured to assess the addiction neural plasticity effect of the drugs. Both 4-F-PCP and 4-Keto-PCP-induced CPP and self-administration; however, only 4-F-PCP elicited locomotor sensitization. Treatment with DA receptor antagonists (SH23390 and haloperidol) inhibited the 4-F- and 4-Keto-induced CPP. Both substances altered the levels of DA receptor D1 (DRD1), thyroxine hydroxylase (TH), DA receptor D2 (DRD2), p-CREB, ∆FosB, and BDNF. The results suggest that 4-F-PCP and 4-Keto-PCP may induce abuse potential in rodents via alterations in dopaminergic system accompanied by addiction neural plasticity.


Assuntos
Condicionamento Operante/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Dopamina/metabolismo , Drogas Ilícitas/metabolismo , Medicamentos Sintéticos/metabolismo , Animais , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Reforço Psicológico , Recompensa , Autoadministração , Área Tegmentar Ventral/efeitos dos fármacos
13.
ACS Sens ; 6(3): 833-841, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33284011

RESUMO

Urinary miRNAs are biomarkers that demonstrate considerable promise for the noninvasive diagnosis and prognosis of diseases. However, because of background noise resulting from complex physiological features of urine, instability of miRNAs, and their low concentration, accurate monitoring of miRNAs in urine is challenging. To address these limitations, we developed a urine-based disposable and switchable electrical sensor that enables reliable and direct identification of miRNAs in patient urine. The proposed sensing platform combining disposable sensor chips composed of a reduced graphene oxide nanosheet and peptide nucleic acid facilitates the label-free detection of urinary miRNAs with high specificity and sensitivity. Using real-time detection of miRNAs in patient urine without pretreatment or signal amplification, this sensor allows rapid, direct detection of target miRNAs in a broad dynamic range with a detection limit down to 10 fM in human urine specimens within 20 min and enables simultaneous quantification of multiple miRNAs. As confirmed using a blind comparison with the results of pathological examination of patients with prostate cancer, the sensor offers the potential to improve the accuracy of early diagnosis before a biopsy is taken. This study holds the usefulness of the practical sensor for the clinical diagnosis of urological diseases.


Assuntos
MicroRNAs/urina , Equipamentos Descartáveis , Eletricidade , Grafite , Humanos , Nanotecnologia , Ácidos Nucleicos Peptídicos
14.
Sensors (Basel) ; 20(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027925

RESUMO

To prevent collapse accidents at construction sites, the marker-based displacement measurement method was developed. However, it has difficulty in obtaining accurate measurements at long distances (>50 m) in an outdoor environment because of camera movements. To overcome this problem, marker-based structural displacement measurement models using image matching and anomaly detection were designed in this study. Then, the performance of each model in terms of camera movement error correction was verified through comparison with that of a conventional model. The results show that the systematic errors due to camera movements (<1.7°) were corrected. The detection rate of markers with displacement reached 95%, and the probability that the error size would be less than 10 mm was ≥ 95% with a 95% confidence interval at a distance of more than 100 m. Moreover, the normalized mean square error was less than 0.1. The models developed in this study can measure the pure displacement of an object without the systematic errors caused by camera movements. Furthermore, these models can be used to measure the displacements of distant structures using closed-circuit television cameras and markers in an outdoor environment with high accuracy.

15.
Eur J Pharmacol ; 885: 173527, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32871174

RESUMO

Accounts regarding the use of novel psychoactive substances continue to escalate annually. These include reports on substituted benzofurans (SBs), such as 1-(1-benzofuran-2-yl)-N-ethylpropan-2-amine (2-EAPB) and 1-(1-benzofuran-5-yl)-N-ethylpropan-2-amine (5-EAPB). Reports on the deaths and adverse consequences from the use of SBs warrant the investigation of their mechanism, possibly predicting the effects of similar compounds. Accordingly, we investigated the possible rewarding and reinforcing effects of 2-EAPB and 5-EAPB through conditioned place preference (CPP), self-administration, and locomotor sensitization tests. We also determined the possible influence of 2-EAPB and 5-EAPB administration on dopamine- and plasticity-related proteins in the nucleus accumbens and ventral tegmental area. 2-EAPB and 5-EAPB induced CPP at different doses and were self-administered by rats. Only 5-EAPB induced locomotor sensitization in mice. 2-EAPB and 5-EAPB did not alter the expressions of dopamine D1 and D2 receptors in the nucleus accumbens, nor changed tyrosine hydroxylase and dopamine transporter expressions in the ventral tegmental area. Both 2-EAPB and 5-EAPB enhanced deltaFosB, but not transcription factor cyclic AMP-response-element binding protein and brain-derived neurotrophic factor in the nucleus accumbens. Hence, the potential rewarding and reinforcing effects on rodents induced by 2-EAPB and 5-EAPB may possibly be associated with alterations in other neurotransmitter systems (besides mesolimbic) and/or neuro-plastic modifications.


Assuntos
Benzofuranos/farmacologia , Condicionamento Operante/efeitos dos fármacos , Psicotrópicos/farmacologia , Recompensa , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Dopamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Autoadministração , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
16.
Biosens Bioelectron ; 147: 111737, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655380

RESUMO

Ion-sensitive field-effect transistor (ISFET) as a biosensor facilitates a process of data-acquisition through label-free and real-time monitoring. Direct quantification of a biomarker in serum is challenging in ISFET biosensor since charged proteins in serum interfere transduction to electrical signals. Here, we report the fabrication of protein blocking layers (PBLs) with intended interfacial charges to minimize non-specific protein bindings on ISFET. Use of charged protein precursors enables to regulate the interfacial charge of PBLs, preserving their intrinsic electric features (neutral: hemoglobin, positively charged: lysozyme, negatively charged: BSA). The effect of this interfacial charge on the signal was demonstrated through PSMA (prostate cancer biomarker) sensing using a dual-gate ISFET biosensor. The neutral PBL showed the minimum noise compared to the negatively and positively charged PBLs, enabling the ISFET to exhibit the same detection range in untreated serum as with pre- or post-treatment (1 fg/ml to 100 ng/ml). The introduction of neutral PBLs to ISFET biosensors would allow the application of the ISFET biosensor as a point-of-care device.


Assuntos
Antígenos de Superfície/sangue , Técnicas Biossensoriais , Proteínas Sanguíneas/isolamento & purificação , Glutamato Carboxipeptidase II/sangue , Animais , Bovinos , Hemoglobinas/isolamento & purificação , Humanos , Muramidase/isolamento & purificação , Análise Serial de Proteínas , Soroalbumina Bovina/isolamento & purificação
17.
Psychopharmacology (Berl) ; 237(3): 757-772, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31828394

RESUMO

RATIONALE: A high number of synthetic dissociative drugs continue to be available through online stores, leading to their misuse. Recent inclusions in this category are 4-MeO-PCP and 3-MeO-PCMo, analogs of phencyclidine. Although the dissociative effects of these drugs and their recreational use have been reported, no studies have investigated their abuse potential. OBJECTIVES: To examine their rewarding and reinforcing effects and explore the mechanistic correlations. METHODS: We used conditioned place preference (CPP), self-administration, and locomotor sensitization tests to assess the rewarding and reinforcing effects of the drugs. We explored their mechanism of action by pretreating dopamine receptor (DR) D1 antagonist SCH23390 and DRD2 antagonist haloperidol during CPP test and investigated the effects of 4-MeO-PCP and 3-MeO-PCMo on dopamine-related proteins in the ventral tegmental area and nucleus accumbens. We also measured the levels of dopamine, phosphorylated cyclic-AMP response element-binding (p-CREB) protein, deltaFosB, and brain-derived neurotrophic factor (BDNF) in the nucleus accumbens. Additionally, we examined the effects of both drugs on brain wave activity using electroencephalography. RESULTS: While both 4-MeO-PCP and 3-MeO-PCMo induced CPP and self-administration, only 4-MeO-PCP elicited locomotor sensitization. SCH23390 and haloperidol inhibited the acquisition of drug CPP. 4-MeO-PCP and 3-MeO-PCMo altered the levels of tyrosine hydroxylase, DRD1, DRD2, and dopamine, as well as that of p-CREB, deltaFosB, and BDNF. All drugs increased the delta and gamma wave activity, whereas pretreatment with SCH23390 and haloperidol inhibited it. CONCLUSION: Our results indicate that 4-MeO-PCP and 3-MeO-PCMo induce rewarding and reinforcing effects that are probably mediated by the mesolimbic dopamine system, suggesting an abuse liability in humans.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dopamina/metabolismo , Morfolinas/administração & dosagem , Núcleo Accumbens/metabolismo , Fenciclidina/análogos & derivados , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Drogas Desenhadas/administração & dosagem , Drogas Ilícitas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Fenciclidina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Recompensa , Autoadministração , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
J Control Release ; 315: 65-75, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31669264

RESUMO

Clinical data from diverse cancer types shows that the increased T cell infiltration in tumors correlates with improved patient prognosis. Acidic extracellular pH is a major attribute of the tumor microenvironment (TME) that promotes immune evasion and tumor progression. Therefore, antagonizing tumor acidity can be a powerful approach in cancer immunotherapy. Here, Pluronic F-127 is used as a NaHCO3 releasing carrier to focally alleviate extracellular tumor acidity. In a mouse tumor model, intratumoral treatment with pH modulating injectable gel (pHe-MIG) generates immune-favorable TME, as evidenced by the decrease of immune-suppressive cells and increase of tumor infiltrating CD8+T cells. The combination of pHe-MIG with immune checkpoint inhibitors, anti-PD-1 and anti-TIGIT antibodies, increases intratumoral T cell function, which leads to tumor clearance. Mechanistically, extracellular acidity was shown to upregulate co-inhibitory immune checkpoint receptors and inhibit mTOR signaling pathways in memory CD8+T cells, which impaired effector functions. Furthermore, an acidic pH environment increased the expression and engagement of TIGIT and its ligand CD155, which suggested that the extracellular pH can regulate the suppressive function of TIGIT pathway. Collectively, these findings suggest that pHe-MIG holds potential as a new TME modulator for effective immune checkpoint inhibitor therapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Portadores de Fármacos/química , Géis , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Poloxâmero/química , Receptor de Morte Celular Programada 1/imunologia , Receptores Imunológicos/imunologia , Serina-Treonina Quinases TOR/imunologia
19.
Eur J Med Chem ; 180: 253-267, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31310917

RESUMO

Herein, we address repurposing hybrids of mosloflavone or 5,6,7-trimethoxyflavone with amide analogs of resveratrol from anticancer leads to novel potent anti-inflammatory chemical entities. To unveil the potent anti-inflammatory molecules, biological evaluations were initiated in LPS-induced RAW 264.7 macrophages at 1 µM concentration. Promising compounds were further evaluated at various concentrations. Multiple proinflammatory mediators were assessed including NO, PGE2, IL-6, TNF-α and IL-1ß. Compound 5z inhibited the induced production of NO, PGE2, IL-6, TNF-α and IL-1ß at the low 1 µM concentration by 44.76, 35.71, 53.48, 29.39 and 41.02%, respectively. Compound 5z elicited IC50 values as low as 2.11 and 0.98 µM against NO and PGE2 production respectively. Compounds 5q and 5g showed potent submicromolar IC50 values of 0.31 and 0.59 µM respectively against PGE2 production. Reverse docking of compound 5z suggested p38-α MAPK, which is a key signaling molecule within the pathways controlling the transcription of proinflammatory mediators, as the molecular target. Biochemical testing confirmed these compounds as p38-α MAPK inhibitors explaining its potent inhibition of proinflammatory mediators' production. Collectively, the results presented 5z as a promising compound for further development of anti-inflammatory agents for treatment of macrophages-and/or immune mediated inflammatory diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Flavonas/farmacologia , Flavonoides/farmacologia , Mediadores da Inflamação/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Resveratrol/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Flavonas/química , Flavonoides/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Células RAW 264.7 , Resveratrol/química , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
ACS Comb Sci ; 21(2): 98-104, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30485057

RESUMO

The heterogeneous nature of tumor-cell populations suggests that quantitative analysis at the single-cell level may provide better insights into cancer biology. Specifically, detection of multiple biomarkers from a single cell offers important initial information about cellular behavior. However, conventional approaches limit biomarker detection at the single-cell level. Here, we fabricated a polymer microwell array to capture single cells from prostate-cancer cell lines and quantitatively analyzed the expression of three different cancer-related biomarkers, CD44, EpCAM, and PSMA, without a membrane protein-extraction step. The resulting information on cell-surface biomarker distributions was compared with that from other standard analytical techniques. Interestingly, a large variation in CD44-expression levels was observed when the cell-proliferation cycle was modulated. On the other hand, the expression levels of EpCAM in three different cell lines are consistent among the different analytical methods with the exception of the microarray, where it has a different substrate material to adhere to. This observation clearly emphasizes that biomarker choice and environmental control are critical for properly understanding the single-cell state.


Assuntos
Neoplasias da Próstata/patologia , Análise de Célula Única/métodos , Antígenos de Superfície/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Molécula de Adesão da Célula Epitelial/metabolismo , Imunofluorescência , Glutamato Carboxipeptidase II/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Masculino , Polímeros/química , Neoplasias da Próstata/metabolismo , Pontos Quânticos/química , Análise Serial de Tecidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...