Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069425

RESUMO

Plant extracts are widely used as traditional medicines. Sophora flavescens Aiton-derived natural compounds exert various beneficial effects, such as anti-inflammatory, anticancer, antioxidant, and antiregenerative activities, through their bioactive compounds, including flavonoids and alkaloids. In the present study, we investigated the biological effects of an S. flavescens-derived flavonoid, trifolirhizin (trifol), on the stimulation of osteogenic processes during osteoblast differentiation. Trifol (>98% purity) was successfully isolated from the root of S. flavescens and characterized. Trifol did not exhibit cellular toxicity in osteogenic cells, but promoted alkaline phosphatase (ALP) staining and activity, with enhanced expression of the osteoblast differentiation markers, including Alp, ColI, and Bsp. Trifol induced nuclear runt-related transcription factor 2 (RUNX2) expression during the differentiation of osteogenic cells, and concomitantly stimulated the major osteogenic signaling proteins, including GSK3ß, ß-catenin, and Smad1/5/8. Among the mitogen-activated protein kinases (MAPKs), Trifol activated JNK, but not ERK1/2 and p38. Trifol also increased the osteoblast-mediated bone-forming phenotypes, including transmigration, F-actin polymerization, and mineral apposition, during osteoblast differentiation. Overall, trifol exhibits bioactive activities related to osteogenic processes via differentiation, migration, and mineralization. Collectively, these results suggest that trifol may serve as an effective phytomedicine for bone diseases such as osteoporosis.


Assuntos
Glucosídeos , Osteogênese , Diferenciação Celular , Glucosídeos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteínas Morfogenéticas Ósseas/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Osteoblastos/metabolismo
2.
Curr Issues Mol Biol ; 45(12): 9926-9942, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38132466

RESUMO

Microglia-induced inflammatory signaling and neuronal oxidative stress are mutually reinforcing processes central to the pathogenesis of neurodegenerative diseases. Recent studies have shown that extracts of dried Pheretima aspergillum (Lumbricus) can inhibit tissue fibrosis, mitochondrial damage, and asthma. However, the effects of Lumbricus extracts on neuroinflammation and neuronal damage have not been previously studied. Therefore, to evaluate the therapeutic potential of Lumbricus extract for neurodegenerative diseases, the current study assessed the extract's anti-inflammatory and antioxidant activities in BV2 microglial cultures stimulated with lipopolysaccharide (LPS) along with its neuroprotective efficacy in mouse hippocampal HT22 cell cultures treated with excess glutamate. Lumbricus extract dose-dependently inhibited the LPS-induced production of multiple proinflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß) and reversed the upregulation of proinflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2). Lumbricus also activated the antioxidative nuclear factor erythroid 2-relayed factor 2/heme oxygenase-1 pathway and inhibited LPS-induced activation of the nuclear factor-κB/mitogen-activated protein kinases/NOD-like receptor family pyrin domain containing 3 inflammatory pathway. In addition, Lumbricus extract suppressed the glutamate-induced necrotic and apoptotic death of HT22 cells, effects associated with upregulated expression of antiapoptotic proteins, downregulation of pro-apoptotic proteins, and reduced accumulation of reactive oxygen species. Chromatography revealed that the Lumbricus extract contained uracil, hypoxanthine, uridine, xanthine, adenosine, inosine, and guanosine. Its effects against microglial activation and excitotoxic neuronal death reported herein support the therapeutic potential of Lumbricus for neurodegenerative diseases.

3.
Exp Mol Med ; 55(5): 999-1012, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121977

RESUMO

Chronic viral infection impairs systemic immunity in the host; however, the mechanism underlying the dysfunction of immune cells in chronic viral infection is incompletely understood. In this study, we studied the lineage differentiation of hematopoietic stem cells (HSCs) during chronic viral infection to elucidate the changes in dendritic cell (DC) differentiation and subsequent impact on T cell functionality using a chronic lymphocytic choriomeningitis virus (LCMV) infection model. We first investigated the lineage differentiation of HSCs in the bone marrow (BM) to elucidate the modulation of immune cell differentiation and found that the populations highly restrained in their differentiation were common myeloid progenitors (CMPs) and common dendritic cell progenitors (CDPs). Of interest, the main immune cells infected with LCMV Clone 13 (CL13) in the BM were CD11b/c+ myeloid DCs. We next characterized CD11b+ DCs that differentiated during chronic LCMV infection. These DCs displayed a less immunogenic phenotype than DCs in naive or acutely infected mice, showing low expression of CD80 but high expression of PD-L1, B7-H4, IDO, TGF-ß, and IL-10. Consequently, these CD11b+ DCs induced less effective CD8+ T cells and more Foxp3+ regulatory T (Treg) cells. Furthermore, CD11b+ DCs generated during CL13 infection could not induce effective CD8+ T cells specific to the antigens of newly invading pathogens. Our findings demonstrate that DCs generated from the BM during chronic viral infection cannot activate fully functional effector CD8+ T cells specific to newly incoming antigens as well as persistent antigens themselves, suggesting a potential cause of the functional alterations in the T cell immune response during chronic viral infection.


Assuntos
Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Camundongos , Animais , Vírus da Coriomeningite Linfocítica/genética , Linfócitos T CD8-Positivos , Linfócitos T Reguladores , Células Dendríticas , Camundongos Endogâmicos C57BL
4.
Biofactors ; 49(1): 127-139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35852295

RESUMO

The Paeonia suffruticosa ANDR. (P. suffruticosa) is commonly used in traditional medicine for various purposes. Suffruticosol A (Suf-A), isolated from P. suffruticosa, is a beneficial compound with antibiofilm, antivirulence, and anti-inflammatory properties. The aim of the present study was to investigate the biological effects of Suf-A on osteogenic processes in pre-osteoblasts. It was determined here in that Suf-A (>98.02%), isolated from P. suffruticosa, showed no cytotoxicity at 0.1-30 µM; however, it induced cytotoxicity at 50-100 µM in pre-osteoblasts. Suf-A increased osteogenic alkaline phosphatase activity and expression levels of noncollagenous proteins. Adhesion and trans-migration on the extracellular matrix were potentiated by Suf-A, but not by wound-healing migration. Suf-A did not affect autophagy or necroptosis during osteoblast differentiation. We found that Suf-A increased runt-related transcription factor 2 (RUNX2) levels and mineralized matrix formation. RUNX2 expression was mediated by Suf-A-induced BMP2-Smad1/5/8 and mitogen-activated protein kinase signaling, as demonstrated by Noggin, a BMP2 inhibitor. These results suggest that Suf-A is a potential natural osteogenic compound.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Transdução de Sinais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Diferenciação Celular , Osteoblastos/metabolismo
5.
J Nat Med ; 77(1): 87-95, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36064835

RESUMO

Jujuboside B (JB) found in the seeds of Zizyphi Spinosi Semen possesses pharmacological functions, such as anti-inflammatory, antiplatelet aggregation, and antianxiety potentials. This study evaluated the effect of JB on liver failure in cecal ligation and puncture (CLP)-induced sepsis. First, we observed histopathological changes in the liver by optical microscopy and the activity of enzymes in serum such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). We further measured the levels of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, nitric oxide (NO), and antioxidative parameters in liver homogenate. The expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), and glucocorticoid receptor (GR) in the liver was observed by Western blotting. CLP enhanced the migration of inflammatory cells, ALT and AST concentrations, and necrosis, which were reduced by JB. In addition, JB reduced 11ß-HSD2 expression and levels of inflammatory mediators (TNF-α, IL-1ß, and NO) in the liver, increased GR expression, enhanced endogenous antioxidative capacity. These results further suggest that JB may protect the liver against CLP-induced damage by regulating anti-inflammatory responses, downregulating 11ß-HSD2 expression and antioxidation, and up-regulating GR expression.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Saponinas , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Glucocorticoides , Saponinas/farmacologia , Fator de Necrose Tumoral alfa , Antioxidantes/farmacologia
6.
Nutrients ; 14(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36558424

RESUMO

The important factors in the pathogenesis of neurodegenerative disorders include oxidative stress and neuron-glia system inflammation. Vignae Radiatae Semen (VRS) exhibits antihypertensive, anticancer, anti-melanogenesis, hepatoprotective, and immunomodulatory properties. However, the neuroprotective effects and anti-neuroinflammatory activities of VRS ethanol extract (VRSE) remained unknown. Thus, this study aimed to investigate the neuroprotective and anti-inflammatory activities of VRSE against hydrogen peroxide (H2O2)-induced neuronal cell death in mouse hippocampal HT22 cells and lipopolysaccharide (LPS)-stimulated BV2 microglial activation, respectively. This study revealed that VRSE pretreatment had significantly prevented H2O2-induced neuronal cell death and attenuated reactive oxygen species generations in HT22 cells. Additionally, VRSE attenuated the apoptosis protein expression while increasing the anti-apoptotic protein expression. Further, VRSE showed significant inhibitory effects on LPS-induced pro-inflammatory cytokines in BV2 microglia. Moreover, VRSE pretreatment significantly activated the tropomyosin-related kinase receptor B/cAMP response element-binding protein, brain-derived neurotrophic factor and nuclear factor erythroid 2-related factor 2, and heme oxygenase-1 signaling pathways in HT22 cells exposed to H2O2 and inhibited the activation of the mitogen-activated protein kinase and nuclear factor-κB mechanism in BV2 cells stimulated with LPS. Therefore, VRSE exerts therapeutic potential against neurodegenerative diseases related to oxidative stress and pathological inflammatory responses.


Assuntos
Microglia , Fármacos Neuroprotetores , Extratos Vegetais , Animais , Camundongos , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , NF-kappa B/metabolismo , Vigna/química , Extratos Vegetais/farmacologia
7.
Curr Issues Mol Biol ; 44(12): 5902-5914, 2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36547063

RESUMO

Arecae Pericarpium has been found to exert anti-migraine, antidepressant, and antioxidative effects. However, the mechanisms involved are unclear. This study explored the possibility that Arecae Pericarpium ethanol extract (APE) exerts neuroprotective effects against oxidative stress-induced neuronal cell death. Since glutamate excitotoxicity has been implicated in the pathogenesis and development of several neurodegenerative disorders, we explored the mechanisms of action of APE on oxidative stress-induced by glutamate. Our results revealed that pretreatment with APE prevents glutamate-induced HT22 cell death. APE also reduced both the levels of intracellular reactive oxygen species and the apoptosis of cells, while maintaining glutamate-induced mitochondrial membrane potentials. Western blotting showed that pretreatment with APE facilitates the upregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) phosphorylation; the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2); and the production of antioxidant enzymes, including catalase, glutamate-cysteine ligase catalytic subunits, NAD(P)H quinone oxidoreductase 1, and heme oxygenase (HO)-1. The administration of LY294002, a PI3K/Akt inhibitor, attenuated the neuroprotective effects of APE on oxidative stress-induced neuronal cell damage. This allowed us to infer that the protective effects of APE on oxidative damage to cells can be attributed to the PI3K/Akt-mediated Nrf-2/HO-1 signaling pathway.

8.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232743

RESUMO

Glutamate-induced neural toxicity in autophagic neuron death is partially mediated by increased oxidative stress. Therefore, reducing oxidative stress in the brain is critical for treating or preventing neurodegenerative diseases. Selaginella tamariscina is a traditional medicinal plant for treating gastrointestinal bleeding, hematuria, leucorrhea, inflammation, chronic hepatitis, gout, and hyperuricemia. We investigate the inhibitory effects of Selaginella tamariscina ethanol extract (STE) on neurotoxicity and autophagic cell death in glutamate-exposed HT22 mouse hippocampal cells. STE significantly increased cell viability and mitochondrial membrane potential and decreased the expression of reactive oxygen species, lactate dehydrogenase release, and cell apoptosis in glutamate-exposed HT22 cells. In addition, while glutamate induced the excessive activation of mitophagy, STE attenuated glutamate-induced light chain (LC) 3 II and Beclin-1 expression and increased p62 expression. Furthermore, STE strongly enhanced the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) phosphorylation activation. STE strongly inhibited glutamate-induced autophagy by activating the PI3K/Akt/mTOR signaling pathway. In contrast, the addition of LY294002, a PI3K/Akt inhibitor, remarkably suppressed cell viability and p-Akt and p62 expression, while markedly increasing the expression of LC3 II and Beclin-1. Our findings indicate that autophagy inhibition by activating PI3K/Akt/mTOR phosphorylation levels could be responsible for the neuroprotective effects of STE on glutamate neuronal damage.


Assuntos
Morte Celular Autofágica , Fármacos Neuroprotetores , Selaginellaceae , Animais , Autofagia , Proteína Beclina-1/farmacologia , Etanol/farmacologia , Ácido Glutâmico/toxicidade , Lactato Desidrogenases/metabolismo , Mamíferos/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selaginellaceae/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
9.
Nutrients ; 13(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835946

RESUMO

Oxidative stress-mediated neuronal damage is associated with the pathogenesis and development of neurodegenerative diseases. Chrysanthemum indicum has antioxidant properties. However, the neuroprotective effects and the cellular mechanism of C. indicum ethanol extract (CIE) against oxidative damage in hippocampal neuronal cells have not been clearly elucidated. Therefore, this study investigated whether CIE has protective effects against hydrogen peroxide (H2O2)-induced oxidative toxicity in HT22 cells. CIE pretreatment significantly improved neuronal cell viability. Moreover, the formation of intracellular reactive oxygen species and apoptotic bodies, and mitochondrial depolarization were significantly reduced in HT22 cells with H2O2-induced oxidative toxicity. Furthermore, CIE increased the phosphorylation of tropomyosin-related kinase receptor B (TrkB), protein kinase B (Akt), cAMP response element-binding protein, the expression of brain-derived neurotrophic factor, antioxidant enzymes, and the nuclear translocation of nuclear factor erythroid 2-related factor 2 by activating the TrkB/Akt signaling pathway. In contrast, the addition of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, reduced the neuroprotective and antioxidant effects of CIE. Taken together; CIE exhibits neuroprotective and antioxidant effects against oxidative damage. Therefore, it can be a potential agent for treating oxidative stress-related neurodegenerative diseases.


Assuntos
Chrysanthemum , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antioxidantes , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Etanol/farmacologia , Hipocampo/citologia , Humanos , Peróxido de Hidrogênio/efeitos adversos , Glicoproteínas de Membrana/metabolismo , Neurônios/citologia , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor trkB/metabolismo
10.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573019

RESUMO

This study aimed to determine the anti-inflammatory and hepatoprotective effects of Lysimachiae Herba ethanolic extract (LHE) in lipopolysaccharide (LPS)-stimulated macrophages and in a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. Then, the production of inflammatory mediators and the activation of related pathways in macrophages were explored. Finally, we assessed the serum aminotransferase levels and the expression of inflammatory/antioxidant molecules in liver tissues in mice. Results revealed that LHE treatment significantly inhibited the production of inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Molecular data showed that LHE remarkably increased the activities of the antioxidant pathway and inhibited the phosphorylation of mitogen-activated protein kinase as well as the transcriptional activity of nuclear factor-κB induced by LPS. Furthermore, it prevented acute liver damage caused by LPS/D-GalN-induced hepatitis by inhibiting aminotransferase levels and histopathological changes in mice. Moreover, treatment with LHE significantly inhibited the activation of inflammatory pathways and increased the expression of antioxidant molecules including heme oxygenase-1/Nuclear factor erythroid 2-related factor 2. In conclusion, LHE has potent anti-inflammatory and hepatoprotective effects in LPS-stimulated macrophages and the LPS/D-GalN-induced acute hepatitis mouse model. Thus, it can be a treatment option for inflammation, hepatitis, and liver injury.

11.
Nutrients ; 13(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445058

RESUMO

Forsythia Fruit (FF), the fruit of Forsythia suspensa, has been used since ancient times as an herbal medication in East Asia to treat inflammation, gonorrhea, and pharyngitis. However, the efficacy of FF against liver damage due to inflammation has not been studied. Here, we explored the protective effects of FF in a mouse hepatitis model induced by lipopolysaccharide (LPS)/D-galactosamine (GalN) treatment. We measured inflammatory cytokine and aminotransferase levels in mouse blood and analyzed the effects of FF on inflammatory gene and protein expression levels in liver tissue. Our results show that FF treatment effectively lowers inflammatory cytokine and serum aminotransferase levels in mice and inhibits the expression of hepatic cytokine mRNA and inflammatory proteins. Furthermore, treatment with FF activated the antioxidant pathway HO-1/Nrf-2 and suppressed severe histological alteration in the livers of LPS/D-GalN-treated mice. Further investigation of the effects of FF on inflammatory reactions in LPS-stimulated macrophages showed that pretreatment with FF inhibits inflammatory mediator secretion and activation of inflammatory mechanisms both in a mouse macrophage RAW 264.7 cells and in primary peritoneal macrophages. These results show that FF has potential worth as a candidate for the treatment of fulminant inflammatory reactions and subsequent liver injury.


Assuntos
Anti-Inflamatórios/farmacologia , Forsythia , Frutas , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Necrose Hepática Massiva/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Forsythia/química , Frutas/química , Galactosamina , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Masculino , Necrose Hepática Massiva/induzido quimicamente , Necrose Hepática Massiva/metabolismo , Necrose Hepática Massiva/patologia , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
13.
Phytomedicine ; 79: 153338, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32992081

RESUMO

BACKGROUND: Pu'er tea, a type of post-fermented tea made from Camellia sinensis leaves, has long been widely used in East Asian countries. It is mainly produced in southern China and is effective in preventing obesity due to its ability to break down fat. However, the effects of Pu'er tea on cognitive impairment or neuroinflammation by endotoxin have not yet been studied. PURPOSE: Here, we assessed the inhibitory activity of Pu'er tea hot water extract (PTW) on neuroinflammation and cognitive impairment and explored its mechanism. STUDY DESIGN: The ability of PTW to inhibit cognitive impairment was investigated in a mouse model of lipopolysaccharide (LPS)-induced neuroinflammation and murine microglia BV2 cells. METHODS: We examined whether oral administration of PTW prevented cognitive impairment and LPS-induced neuroinflammation using behavioral tests, Nissl staining, immunohistochemistry, western blotting, real-time reverse transcription-polymerase chain reaction (real-time RT-PCR), Griess assay, and enzyme-linked immunosorbent assay (ELISA). RESULTS: First, Morris water maze (MWM) and passive avoidance (PA) tests demonstrated that oral administration of PTW effectively attenuated LPS-induced spatial memory loss and inhibited neuronal damage of mouse brains. Histopathological analysis showed that PTW repressed LPS-induced expression of the activation markers ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP). Furthermore, PTW inhibited the expression of amyloidogenesis proteins such as amyloid-ß precursor protein (APP), C99, and ß-secretase-1 (BACE-1); production of inflammatory proteins such as Iba-1, GFAP, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2; activation of inflammatory pathways; and expression of inflammatory mediator mRNAs in hippocampal tissue. In cultured microglia, PTW treatment inhibited the generation of various inflammatory factors activated by LPS. CONCLUSION: Our results in vivo and in vitro demonstrate that PTW effectively prevents cognitive impairment caused by neuroinflammation and is, therefore, a potential candidate for the development of a therapeutic agent for neurodegenerative diseases.


Assuntos
Encéfalo/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Alimentos Fermentados , Chá , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/patologia , Células Cultivadas , Disfunção Cognitiva/induzido quimicamente , Modelos Animais de Doenças , Alimentos Fermentados/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Camundongos Endogâmicos ICR , Microglia/efeitos dos fármacos , Microglia/patologia , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Chá/química
14.
Nutrients ; 12(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645984

RESUMO

Banhasasim-tang (BHS) is an herbal medicine that has been widely used in East Asia to treat various symptoms associated with upper abdomen swelling. BHS has not been studied previously for neuroinflammation or cognitive disorder. Here, we use a lipopolysaccharide (LPS) model to investigate the effects and mechanisms of BHS in neuroinflammation and cognitive impairment of mice. We used a mouse model of LPS-induced cognitive impairment and neuroinflammation and examined whether administration of BHS prevents these deficits via Morris water maze test, passive avoidance test, histopathological analysis, Western blotting, and real-time reverse transcription polymerase chain reaction (RT-qPCR). We found via behavioral tests that BHS treatment effectively prevented LPS-induced memory loss and neuronal damage in mice. Histopathological analysis of mouse brains revealed that BHS inhibited LPS-induced expression of microglial and astrocyte activation markers. Furthermore, BHS inhibits the production of markers related to neurodegeneration, amyloidogenesis, and inflammation, and mRNA expression of inflammatory mediators in mouse brain tissue. Additionally, BHS pretreatment effectively inhibited generation of inflammatory factors and pathways in BV2 microglial cells stimulated by LPS. These observations indicate that BHS is effective in preventing cognitive impairment caused by neuroinflammation and has strong potential as a candidate treatment for neuronal inflammatory diseases.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Inflamação/metabolismo , Fitoterapia/métodos , Preparações de Plantas/farmacologia , Plantas Medicinais/química , Animais , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/prevenção & controle , Disfunção Cognitiva/prevenção & controle , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Camundongos , Microglia/efeitos dos fármacos , Neurônios/metabolismo
15.
J Immunol ; 205(3): 760-766, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32540996

RESUMO

P2X5 is a member of the P2X purinergic receptor family of ligand-gated cation channels and has recently been shown to regulate inflammatory bone loss. In this study, we report that P2X5 is a protective immune regulator during Listeria monocytogenes infection, as P2X5-deficient mice exhibit increased bacterial loads in the spleen and liver, increased tissue damage, and early (within 3-6 d) susceptibility to systemic L. monocytogenes infection. Whereas P2X5-deficient mice experience normal monocyte recruitment in response to L. monocytogenes, P2X5-deficient bone marrow-derived macrophages (BMMs) exhibit defective cytosolic killing of L. monocytogenes We further showed that P2X5 is required for L. monocytogenes-induced inflammasome activation and IL-1ß production and that defective L. monocytogenes killing in P2X5-deficient BMMs is substantially rescued by exogenous IL-1ß or IL-18. Finally, in vitro BMM killing and in vivo L. monocytogenes infection experiments employing either P2X7 deficiency or extracellular ATP depletion suggest that P2X5-dependent anti-L. monocytogenes immunity is independent of the ATP-P2X7 inflammasome activation pathway. Together, our findings elucidate a novel and specific role for P2X5 as a critical mediator of protective immunity.


Assuntos
Inflamassomos/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Receptores Purinérgicos P2X5/deficiência , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/imunologia , Animais , Suscetibilidade a Doenças , Inflamassomos/genética , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Listeriose/genética , Listeriose/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/patologia , Receptores Purinérgicos P2X5/imunologia
16.
Food Chem ; 314: 126196, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31954286

RESUMO

Little is known of plasma-mediated relations between major food components and their biological capacities. In the present work, the effects of dielectric barrier discharge (DBD) plasma irradiation on pure sesamol and sesame oil were investigated using spectroscopic (LC-MS, NMR) and bioassay methods. Sesamol was degraded when subjected to plasma irradiation for 40 min, and the exposed products exhibited improved anti-glycation capacities against advanced glycation end products (AGEs) formation and better ONOO- scavenging ability. Structures of newly formed compounds were determined spectroscopically. Quantitative LC-MS analysis of the major products generated in sesamol and sesame oil was achieved using isolates 1-4 of purified sesamol plasma treated for 40 min. These results indicate that the predominant chemical changes induced in sesamol and sesame oil by DBD plasma treatment might enhance biological properties.


Assuntos
Benzodioxóis/química , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Fenóis/química , Óleo de Gergelim/química , Dimerização , Manipulação de Alimentos/métodos , Sequestradores de Radicais Livres/química , Oxirredução , Ácido Peroxinitroso/química , Gases em Plasma
17.
Molecules ; 24(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635294

RESUMO

Angelicae Gigantis Radix (AGR) has been widely used as a traditional medicine in East Asia. The effects of AGR on neuroinflammation have not previously been studied in detail. In the study presented here, we investigated the antineuroinflammatory properties of this herb and its mechanism of operation. The effects of AGR on neuroinflammation were studied by measuring the production of inflammatory factors and related enzymes, and analyzing the expression levels of proteins and genes involved its activity, in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that AGR pretreatment strongly inhibits the production of nitric oxide (NO), cytokines, and the enzymes inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2, and effectively induces the activation of heme oxygenase (HO)-1 and its regulator, nuclear factor erythroid 2-related factor 2 (Nrf-2). We also found that AGR effectively regulates the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK). We confirmed the antineuroinflammatory effects of the main constituents of the plant as identified by high-performance liquid chromatography (HPLC). Our results indicate that the neuroinflammation inhibitory activity of AGR occurs through inhibition of NF-κB and MAPK and activation of Nrf-2.


Assuntos
Angelica/química , Etanol/farmacologia , Lipopolissacarídeos/efeitos adversos , Microglia/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Etanol/química , Regulação da Expressão Gênica/efeitos dos fármacos , Medicina Tradicional do Leste Asiático , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Transdução de Sinais
18.
Mediators Inflamm ; 2019: 9184769, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565034

RESUMO

Hoveniae semen seu fructus (HSF, fruit and seed of Hovenia dulcis Thunb) is an important traditional herbal medicine and food supplement in East Asia for the treatment of liver diseases, alcohol poisoning, obesity, allergy, and cancer. HSF has also been reported to have anti-inflammatory activity, but the cellular mechanism of action is not fully understood. We assessed the anti-inflammatory properties of an HSF ethanol (HSFE) extract and explored its precise mechanism. The ability of HSFE to suppress inflammatory responses was investigated in a murine macrophage cell line, RAW 264.7, and mouse primary macrophages. Secretions of NO, proinflammatory cytokines, inflammatory factors, and related proteins were measured using the Griess assay, ELISA, Western blot analysis, and real-time PCR, respectively. In addition, the main components of HSFE were analyzed by HPLC, and their anti-inflammatory activity was confirmed. Our results showed that pretreatment of HSFE markedly reduced the expression of NO and iNOS without causing cytotoxicity and significantly attenuated secretion of proinflammatory cytokines, including TNF-α, IL-6, and IL-1ß. In addition, HSFE strongly suppressed phosphorylation of MAPK and decreased the activation of AP-1, JAK2/STAT, and NF-κB in LPS-stimulated RAW 264.7 cells in a concentration-dependent manner. Furthermore, HSFE strongly suppressed the inflammatory cytokine levels in mouse peritoneal macrophages. Also, as a result of HPLC analysis, three main components, ampelopsin, taxifolin, and myricetin, were identified in the HSFE extract, and each compound effectively inhibited the secretion of inflammatory mediators induced by LPS. These findings show that HSFE exerts anti-inflammatory effects by suppressing the activation of MAPK, AP-1, JAK2/STAT, and NF-κB signaling pathways in LPS-stimulated macrophages. In addition, the anti-inflammatory efficacy of HSFE appears to be closely related to the action of the three main components. Therefore, HSFE appears to be a promising candidate for the treatment of inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Etanol/química , Extratos Vegetais/uso terapêutico , Animais , Citocinas/sangue , Lipopolissacarídeos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células RAW 264.7 , Fator de Transcrição AP-1/sangue
19.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426492

RESUMO

Microglial activation and the resulting neuroinflammation are associated with a variety of brain diseases, such as Alzheimer's disease and Parkinson's disease. Thus, the control of microglial activation is an important factor in the development of drugs that can treat or prevent inflammation-related neurodegenerative disorders. Atractylodis Rhizoma Alba (ARA) has been reported to exhibit antioxidant, gastroprotective, and anti-inflammatory effects. However, the effects of ARA ethanolic extract (ARAE) on microglia-mediated neuroinflammation have not been fully elucidated. In this work, we explored the anti-neuroinflammatory properties and underlying molecular mechanisms of ARAE in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. Our results showed that ARAE significantly attenuates the production of nitric oxide (NO) and inflammatory cytokines induced by LPS. ARAE treatment also inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 without causing cytotoxicity. ARAE markedly attenuated the transcriptional activities of nuclear factor (NF)-κB and mitogen-activated protein kinases (MAPK) phosphorylation, and induced heme oxygenase (HO)-1 expression. High-performance liquid chromatography (HPLC) analysis showed that ARAE contains three main components-atractylenolide I, atractylenolide III, and atractylodin-all compounds that significantly inhibit the production of inflammatory factors. These findings indicate that ARAE may be a potential therapeutic agent for the treatment of inflammation-related neurodegenerative diseases.


Assuntos
Inflamação/tratamento farmacológico , Lactonas/farmacologia , Microglia/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Preparações de Plantas/farmacologia , Sesquiterpenos/farmacologia , Animais , Asteraceae/química , Linhagem Celular , Ciclo-Oxigenase 2/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Heme Oxigenase-1/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Microglia/metabolismo , Microglia/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Preparações de Plantas/química , Raízes de Plantas/química , Transdução de Sinais
20.
BMB Rep ; 51(9): 468-473, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30103845

RESUMO

Purinergic receptor signaling is increasingly recognized as an important regulator of inflammation. The P2X family purinergic receptors P2X5 and P2X7 have both been implicated in bone biology, and it has been suggested recently that P2X5 may be a significant regulator of inflammatory bone loss. However, a role for P2X5 in periodontitis is unknown. The present study aimed to evaluate the functional role of P2X5 in ligatureinduced periodontitis in mice. Five days after placement of ligature, analysis of alveolar bone revealed decreased bone loss in P2rx5-/- mice compared to P2rx7-/- and WT control mice. Gene expression analysis of the gingival tissue of ligated mice showed that IL1b, IL6, IL17a and Tnfsf11 expression levels were significantly reduced in P2rx5-/- compared to WT mice. These results suggest the P2X5 receptor may regulate bone loss related to periodontitis and it may thus be a novel therapeutic target in this oral disease. [BMB Reports 2018; 51(9): 468-473].


Assuntos
Perda do Osso Alveolar/metabolismo , Periodontite/metabolismo , Receptores Purinérgicos P2X5/metabolismo , Animais , Feminino , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Porphyromonas gingivalis/química , Receptores Purinérgicos P2X5/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...