Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257303

RESUMO

We present a study on the green synthesis of undoped and Er-doped ZnO compounds using Mangifera indica gum (MI). A set of tests were conducted to assess the structure of the material. The tests included X-ray diffraction, Raman, and Fourier-transform infrared spectroscopy. Optical properties were studied using diffuse reflectance and photoluminescence. Morphological and textural investigations were done using SEM images and N2 adsorption/desorption. Furthermore, photocatalytic tests were performed with methylene blue (MB), yellow eosin (EY), and the pharmaceutical drug ibuprofen (IBU) under UV irradiation. The study demonstrated that replacing the stabilizing agent with Mangifera indica gum is an effective method for obtaining ZnO nanoparticles. Additionally, the energy gap of the nanoparticles exhibits a slight reduction in value. Photoluminescence studies showed the presence of zinc vacancies and other defects in both samples. In the photocatalytic test, the sample containing Er3+ exhibited a degradation of 99.7% for methylene blue, 81.2% for yellow eosin, and 52.3% for ibuprofen over 120 min. In the presence of methyl alcohol, the degradation of MB and EY dyes is 16.7% and 55.7%, respectively. This suggests that hydroxyl radicals are responsible for the direct degradation of both dyes. In addition, after the second reuse, the degradation rate for MB was 94.08%, and for EY, it was 82.35%. For the third reuse, the degradation rate for MB was 97.15%, and for EY, it was 17%. These results indicate the significant potential of the new semiconductor in environmental remediation applications from an ecological synthesis.


Assuntos
Mangifera , Nanopartículas , Óxido de Zinco , Amarelo de Eosina-(YS) , Azul de Metileno , Fotólise , Ibuprofeno , Corantes
2.
Molecules ; 28(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067502

RESUMO

This work adopted a green synthesis route using cashew tree gum as a mediating agent to obtain Ni-doped ZnO nanoparticles through the sol-gel method. Structural analysis confirmed the formation of the hexagonal wurtzite phase and distortions in the crystal lattice due to the inclusion of Ni cations, which increased the average crystallite size from 61.9 nm to 81.6 nm. These distortions resulted in the growth of point defects in the structure, which influenced the samples' optical properties, causing slight reductions in the band gaps and significant increases in the Urbach energy. The fitting of the photoluminescence spectra confirmed an increase in the concentration of zinc vacancy defects (VZn) and monovacancies (Vo) as Zn cations were replaced by Ni cations in the ZnO structure. The percentage of VZn defects for the pure compound was 11%, increasing to 40% and 47% for the samples doped with 1% and 3% of Ni cations, respectively. In contrast, the highest percentage of VO defects is recorded for the material with the lowest Ni ions concentration, comprising about 60%. The influence of dopant concentration was also reflected in the photocatalytic performance. Among the samples tested, the Zn0.99Ni0.01O compound presented the best result in MB degradation, reaching an efficiency of 98.4%. Thus, the recovered material underwent reuse tests, revealing an efficiency of 98.2% in dye degradation, confirming the stability of the photocatalyst. Furthermore, the use of different inhibitors indicated that •OH radicals are the main ones involved in removing the pollutant. This work is valuable because it presents an ecological synthesis using cashew gum, a natural polysaccharide that has been little explored in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...