Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-495149

RESUMO

Cognitive dysfunction is often reported in post-COVID patients, but its underlying mechanisms remain unknown. While some evidence indicate that SARS-CoV-2 can reach and directly impact the brain, others suggest viral neuroinvasion as a rare event. Independently of brain viral infection, the ability of SARS-CoV-2 spike (S) protein to cross the BBB and reach memory-related brain regions has already been shown. Here, we demonstrate that brain infusion of S protein in mice induces late cognitive impairment and increases serum levels of neurofilament light chain (NFL), which recapitulates post-COVID features. Neuroinflammation, hippocampal microgliosis and synapse loss are induced by S protein. Increased engulfment of hippocampal presynaptic terminals late after S protein brain infusion were found to temporally correlate with cognitive deficit in mice. Blockage of TLR4 signaling prevented S-associated detrimental effects on synapse and memory loss. In a cohort of 86 patients recovered from mild COVID-19, genotype GG TLR4 -2604G>A (rs10759931) was associated with poor cognitive outcome. Collectively, these findings indicate that S protein directly impacts the brain and suggest that TLR4 is a potential target to prevent post-COVID cognitive dysfunction. One Sentence SummaryTLR4 mediates long-term cognitive impairment in mice and its genetic variant increases the risk of poor cognitive outcome in post-COVID patients.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-488873

RESUMO

The severe acute respiratory syndrome CoV-2 rapidly spread worldwide, causing a pandemic. After a period of evolutionary stasis, a set of SARS-CoV-2 mutations has arisen in the spike, the leading glycoprotein at the viral envelope and the primary antigenic candidate for vaccines against the 2019 CoV disease (COVID-19). Here, we present comparative biochemical data of the glycosylated full-length ancestral and D614G spike together with three other highly transmissible strains classified by the World Health Organization as variants of concern (VOC): beta, gamma, and delta. By showing that only D614G early variant has less hydrophobic surface exposure and trimer persistence at mid-temperatures, we place D614G with features that support a model of temporary fitness advantage for virus spillover worldwide. Further, during the SARS-CoV-2 adaptation, the spike accumulates alterations leading to less structural rigidity. The decreased trimer stability observed for the ancestral and the gamma strain and the presence of D614G uncoupled conformations mean higher ACE-2 affinities when compared to the beta and delta strains. Mapping the energetic landscape and flexibility of spike variants is necessary to improve vaccine development.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-254375

RESUMO

We used the trimeric spike (S) glycoprotein (residues 1-1208) in the prefusion conformation to immunize horses for production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by anti-spike ELISA were above 1:1,000,000, and neutralizing antibody titer was 1:14,604 (average PRNT90), which is 140-fold higher than the average neutralizing titer of plasma from three convalescent COVID-19 patients analyzed for comparison. Using the same technology routinely used for industrial production of other horse hyperimmune products, plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding a F(ab)2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Repeating the hyperimmunization in a second group of horses confirmed the very high neutralizing titers in serum and in a GMP clinical F(ab)2 lot. Virus-neutralizing activity in samples from mice that received the F(ab)2 preparation was detected even three days after injection, indicating an appropriate half-life for therapeutic intervention. These results supported the design of a clinical trial (identifier NCT04573855) to evaluate safety and efficacy of this horse F(ab)2 preparation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...