Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Factors ; : 187208241249423, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713086

RESUMO

OBJECTIVE: To assess frontal plane motion of the pelvis and lumbar spine during 2 h of seated and standing office work and evaluate associations with transient low back pain. BACKGROUND: Although bending and twisting motions are cited as risk factors for low back injuries in occupational tasks, few studies have assessed frontal plane motion during sedentary exposures. METHODS: Twenty-one participants completed 2 h of seated and standing office work while pelvic obliquity, lumbar lateral bending angles, and ratings of perceived low back pain were recorded. Mean absolute angles were compared across 15-min blocks, amplitude probability distribution functions were calculated, and associations between lateral postures and low back pain were evaluated. RESULTS: Mean pelvic obliquity (sit = 4.0 ± 2.8°, stand = 3.5 ± 1.7°) and lumbar lateral bending (sit = 4.5 ± 2.5°, stand = 4.1 ± 1.6°) were consistently asymmetrical. Pelvic obliquity range of motion was 4.7° larger in standing (13.6 ± 7.5°) than sitting (8.9 ± 8.7°). In sitting, 52% (pelvis) and 71% (lumbar) of participants, and in standing, 71% (pelvis and lumbar) of participants, were considered asymmetric for >90% of the protocol. Lateral postures displayed weak to low correlations with peak low back pain (R ≤ 0.388). CONCLUSION: The majority of participants displayed lateral asymmetries for the pelvis and lumbar spine within 5° of their upright standing posture. APPLICATION: In short-term sedentary exposures, associations between lateral postures and pain indicated that as the range in lateral postures increases there may be an increased possibility of pain.

2.
Appl Ergon ; 119: 104310, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38776566

RESUMO

Dynamic sitting may mitigate low back pain during prolonged seated work. The current study compared pelvis and lumbar spine kinematics, pain, and work productivity, in traditional and dynamic sitting. Sixteen participants completed three 20-min blocks of computer work and activity guided tasks in a traditional office chair or backless and multiaxial rotating seat pan while kinematics were measured from accelerometers on the low back. Pain ratings were recorded on a visual analogue scale every 10 min. Similar pelvis and lumbar kinematics emerged when performing computer work in traditional and dynamic sitting. Pelvis and lumbar sagittal and frontal plane shifts and fidgets were largest for dynamic sitting in the activity guided tasks. Buttocks pain was higher in dynamic sitting, but low back pain and work productivity were unaffected. Dynamic sitting increased spine movement during activity guided tasks, without negatively impacting lumbar kinematics, low back pain, or productivity during seated computer work.


Assuntos
Dor Lombar , Vértebras Lombares , Postura Sentada , Humanos , Fenômenos Biomecânicos , Masculino , Vértebras Lombares/fisiologia , Vértebras Lombares/fisiopatologia , Feminino , Dor Lombar/etiologia , Dor Lombar/fisiopatologia , Adulto , Adulto Jovem , Movimento/fisiologia , Computadores , Pelve/fisiologia , Acelerometria , Medição da Dor , Análise e Desempenho de Tarefas , Ergonomia , Eficiência/fisiologia , Postura/fisiologia , Nádegas/fisiologia , Doenças Profissionais/etiologia , Trabalho/fisiologia
3.
J Biomech ; 166: 112060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38537369

RESUMO

An accelerometer-based pelvis has been employed to study segment and joint kinematics during scenarios involving close human-object interface and/or line-of-sight obstructions. However, its accuracy for examining low back kinetic outcomes is unknown. This study compared reaction moments and contact forces of the L5S1 joint calculated with an accelerometer-based and optically tracked pelvis segment. An approach to correct the global pelvis position as a function of thigh angle was developed. One participant performed four dynamic tasks: forward bend, squat, sit-to-stand-to-sit, and forward lunge. A standard bottom-up inverse dynamics approach was used and the root mean square error (RMSE) and coefficient of determination (R2) were calculated to examine kinetic differences between the optical and accelerometer approaches. The RMSE observed for L5S1 reaction flexion-extension moments ranged from 1.32 Nm to 2.20 Nm (R2 ≥ 0.98). The RMSE for net shear and compression reaction forces ranged from 2.13 to 10.45 N and 0.63 - 4.96 N, respectively. Similarly, the RMSE for L5S1 joint contact shear and compression ranged from 13.45 N to 19.51 N (R2 ≥ 0.85) and 31.18 N - 55.97 N (R2 ≥ 0.97), respectively. In conclusion, the accelerometer-based pelvis together with the approach to correct the global pelvis position is a feasible approach for computing low back kinetics with a single equivalent muscle model. The observed error in joint contact forces represents less than 5 % of the NIOSH recommended action limits and is unlikely to alter the interpretation of low back injury risk.


Assuntos
Movimento , Pelve , Humanos , Movimento/fisiologia , Pelve/fisiologia , Postura/fisiologia , Abdome , Acelerometria , Fenômenos Biomecânicos
4.
J Electromyogr Kinesiol ; 69: 102752, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746068

RESUMO

In vivo lumbar passive stiffness is often used to assess time-dependent changes in lumbar tissues and to define the neutral zone. We tested the hypothesis that flexing the hips would alter tension in hip and spine musculature, leading to a more extended passive stiffness curve (i.e., right-shifted), without changes in lumbar stiffness. Twenty participants underwent side-lying passive testing with the lower limbs positioned in Stand, Kneel, and Sit representative postures. Moment-angle curves were constructed from the lumbar angles and the moment at L4/5 and partitioned into three zones. Partially supporting our hypothesis, lumbar stiffness within the low and transition stiffness zones was similar between the Stand and Sit. Contrary to our hypothesis, lumbar angles were significantly larger in the Sit compared to the Stand and Kneel postures at the first and second breakpoints, with average differences of 9.3° or 27.2% of passive range of motion (%PassRoM) in flexion and 5.6° or 16.6 %PassRoM in extension. Increased flexion in the Sit may be linked to increased posterior pelvic tilt and associated lower lumbar vertebrae flexion. Investigators must ensure consistent pelvis and hip positioning when measuring lumbar stiffness. Additionally, the adaptability of the neutral zone to pelvis posture, particularly between standing and sitting, should be considered in ergonomic applications.


Assuntos
Músculo Esquelético , Postura Sentada , Humanos , Músculo Esquelético/fisiologia , Postura/fisiologia , Vértebras Lombares/fisiologia , Extremidade Inferior , Amplitude de Movimento Articular/fisiologia
5.
Ergonomics ; 66(3): 338-349, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35634905

RESUMO

Minimal data exist on the neutral position for the lumbar spine, trunk, and thighs when adopting a hybrid posture. This study examined sex differences in the neutral zone lumbar stiffness and the lumbar and trunk-thigh angle boundaries of the neutral zone, and determined if the standing lumbar angle fell within the neutral zone. Passive lumbar flexion and extension moment-angle curves were generated for 31 participants (13 M, 18 F), pooled from two datasets, with trunk-thigh angles available for 10 participants. The neutral zone was defined as the low stiffness zone from both the flexion and extension curves. Males demonstrated significantly greater extensor stiffness. Neutral lumbar and trunk-thigh angles ranged on average -22.2 to 0.2° and 124.2 to 159.6° for males and -17.8 to -1.3° and 143.2 to 159.5° for females, respectively. Standing lumbar angles fell outside the neutral zone for 44% of participants. These neutral zone boundaries may inform kinematics for hybrid chair designs.Practitioner summary: Adoption of a neutral spinal posture may be achieved through hybrid chair design, yet minimal data exists on a physiologically defined neutral zone. Using measures of in vivo lumbar stiffness, the lumbar and trunk-thigh angular boundaries of the neutral zone were defined for both males and females.Abbreviations: EMG: electromyography; MVC: maximal voluntary contraction.


Assuntos
Músculo Esquelético , Coxa da Perna , Humanos , Masculino , Feminino , Músculo Esquelético/fisiologia , Postura/fisiologia , Eletromiografia , Vértebras Lombares/fisiologia , Fenômenos Biomecânicos
6.
Hum Factors ; 65(7): 1394-1406, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-34579587

RESUMO

OBJECTIVE: To explore how individual characteristics influence selected lumbar support prominence (LSP), seated lumbar flexion, seatback average pressure, contact area, and center of pressure (CoP) location before and after 1 hr of driving. BACKGROUND: An LSP can alter posture and may reduce low back pain during prolonged driving. Although LSP preference varies across individuals and may change over time, few investigations have explored the time-varying response to individually selected adjustable seat parameters. METHOD: Forty individuals selected LSP settings in an automotive seat through a series of systematic adjustment trials. The average LSP setting was fixed for a 1-hr driving simulation, followed by one final adjustment trial. Regressions were performed between individual characteristics and selected LSP, lumbar posture, and measures of seatback pressure from the initial adjustment trials. ANOVAs were performed to determine the effect of time and sex on these dependent variables. Discomfort was also monitored throughout the protocol. RESULTS: Individual's standing lumbar lordosis, selected LSP, and height and mass were significant predictors for seated lumbar flexion, seatback average pressure, and contact area, respectively. Discomfort levels remained low; however, following the driving protocol, individuals altered their posture to decrease lumbar flexion and increase seatback average pressure without significant adjustments to the LSP. CONCLUSION: These findings highlight individual characteristics to consider in automotive seat design and that the method for determining LSP settings may facilitate appropriate LSP selection. APPLICATION: A systematic method to determine LSP settings may reduce discomfort and automate seat adjustments, such that only short-term postural adjustments may be required.


Assuntos
Condução de Veículo , Dor Lombar , Humanos , Região Lombossacral , Pressão , Postura/fisiologia , Fenômenos Biomecânicos
7.
Cardiovasc Intervent Radiol ; 46(2): 220-228, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36138191

RESUMO

PURPOSE: To evaluate associations of ghrelin, glucagon-like peptide 1 (GLP-1), and peptide YY 3-36 (PYY3-36) with weight change after bariatric arterial embolization (BAE). MATERIALS AND METHODS: Subgroup analysis of data collected during the BEAT Obesity Trial involving 7 participants with BMI > 40 who were embolized with 300- to 500-µm Embosphere Microspheres. Three participants were characterized as "responders" (top tertile of weight loss at each visit) and 4 as "non-responders" (bottom tertile of weight loss at each visit). Mean ± standard deviation participant age was 44 ± 11 years, and 6 of 7 participants were women. Participants were evaluated at baseline, 2 weeks, and 1, 3, 6, and 12 months after BAE. After fasting, participants consumed a mixed meal test at each visit; blood samples were collected at 0, 15, 30, 60, 120, 180, and 240 min. Study outcome measures were changes in weight from baseline and plasma serum hormone levels. RESULTS: Percentage change in ghrelin decreased significantly in non-responders at 60 and 120 min at 1 and 12 months (estimated difference between 60 vs. 0 min at 1 month: 69% [95% CI - 126%, - 13%]; estimated difference between 120 vs. 0 min at 12 months: - 131% (95% CI - 239%, - 23%]). Responders had significantly lower ghrelin and greater weight loss than non-responders at 6 and 12 months. GLP-1 and PYY3-36 levels did not differ between groups. CONCLUSION: Participants with consistent weight loss throughout follow-up had lower ghrelin than non-responders, supporting decreased ghrelin as a mechanism underlying BAE-induced weight loss. LEVEL OF EVIDENCE I: High-quality randomized trial or prospective study; testing of previously developed diagnostic criteria on consecutive patients; sensible costs and alternatives; values obtained from many studies with multiway sensitivity analyses; systematic review of Level I RCTs and Level I studies.


Assuntos
Bariatria , Grelina , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Estudos Prospectivos , Obesidade , Redução de Peso , Peptídeo 1 Semelhante ao Glucagon
8.
J Neurosurg Case Lessons ; 4(26)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572976

RESUMO

BACKGROUND: Reports of cerebrovascular ischemia and stroke occurring as predominant neurological sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), are increasingly evident within the literature. While various pathophysiological mechanisms have been postulated, including hypercoagulability, endothelial invasion, and systemic inflammation, discrete mechanisms for viral neurotropism remain unclear and controversial. OBSERVATIONS: The authors present a unique case study of a 64-year-old male with acute COVID-19 infection and acute worsening of previously stable cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a rare heritable arteriopathy due to mutation in the Notch3 gene, which is critical for vascular development and tone. Delayed cranial neuropathies, brainstem fluid-attenuated inversion recovery signal, and enhancement of olfactory and vagus nerves on magnetic resonance neurography in this patient further support viral neurotropism via cranial nerves in addition to cerebral vasculature. LESSONS: To the authors' knowledge, this is the first case in the literature that not only demonstrates the consequences of COVID-19 infection in a patient with altered cerebrovascular autoregulation such as CADASIL but also highlights the tropism of SARS-CoV-2 for (1) cranial nerves as a mode of entry to the central nervous system and (2) vessels as a cause of cerebrovascular ischemia.

9.
Adv Healthc Mater ; 11(21): e2201060, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36049222

RESUMO

Bacterial biofilms are a major healthcare concern resulting in refractory conditions such as chronic wounds, implant infections and failure, and multidrug-resistant infections. Aggressive and invasive strategies are employed to cure biofilm infections but are prone to long and expensive treatments, adverse side-effects, and low patient compliance. Recent strategies such as ultrasound-based therapies and antimicrobial nanomaterials have shown some promise in the effective eradication of biofilms. However, maximizing therapeutic effect while minimizing healthy tissue damage is a key challenge that needs to be addressed. Here a combination treatment involving ultrasound and antimicrobial polymeric nanoparticles (PNPs) that synergistically eradicate bacterial biofilms is reported. Ultrasound treatment rapidly disrupts biofilms and increases penetration of antimicrobial PNPs thereby enhancing their antimicrobial activity. This results in superior biofilm toxicity, while allowing for a two- to sixfold reduction in both the concentration of PNPs as well as the duration of ultrasound. Furthermore, that this reduction minimizes cytotoxicity toward fibroblast cells, while resulting in a 100- to 1000-fold reduction in bacterial concentration, is demonstrated.


Assuntos
Anti-Infecciosos , Nanopartículas , Humanos , Biofilmes , Antibacterianos/farmacologia , Bactérias , Polímeros/farmacologia , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
10.
J Appl Biomech ; 38(4): 246-254, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35894911

RESUMO

Specific participant characteristics may be leveraged to dictate marker placements which reduce soft tissue artifact; however, a better understanding of the relationships between participant characteristics and soft tissue artifact are first required. The purpose of this study was to assess the accuracy in which measures of whole-body and thigh anthropometry could predict mislocation error of the hip joint center, tracked using skin-mounted marker clusters. Fifty participants completed squatting and kneeling, while pelvis and lower limb motion were recorded. The effect of soft tissue artifact was estimated from 6 rigid thigh marker clusters by evaluating their ability to track the position of the hip joint center most like the pelvis cluster. Eighteen backward stepwise linear regressions were performed using 10 anthropometric measures as independent variables and the mean of the peak difference between the thigh and pelvis cluster-tracked hip joint centers. Fourteen models significantly predicted error with low to moderate fit (R = .38-.67), explaining 14% to 45% of variation. Partial correlations indicated that soft tissue artifact may increase with soft tissue volume and be altered by local soft tissue composition. However, it is not recommended that marker placement be adjusted based on anthropometry alone.


Assuntos
Articulação do Quadril , Coxa da Perna , Antropometria , Artefatos , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Extremidade Inferior
11.
Appl Ergon ; 102: 103721, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35231651

RESUMO

Although sitting on a stability ball has become an alternative to using an office chair, little is known about the increased potential for a fall on the deformable seat. This study examined differences in stability between sitting on a seat pan of a backless office chair and a stability ball during reaching tasks. Sixteen participants performed forward and lateral reaching tasks on a backless and armless office chair and stability ball while whole-body motion and force data under the seat were recorded. Even with participants placing their feet 16.5 cm wider when seated on the ball, the perceived fall risk was significantly greater. Centre of pressure displacement tended to be smaller under the ball for lateral reach directions, but larger during far anterior reaches. While not statistically significant, the medial-lateral margin of stability was on average 3.4 cm smaller on the ball. Despite attempts to increase stability by widening their stance, stability ball fall risk remained higher.


Assuntos
Postura , Postura Sentada , Fenômenos Biomecânicos , Ergonomia , , Humanos
12.
Ergonomics ; 65(2): 253-264, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34397308

RESUMO

High knee flexion postures, despite their association with increased incidences of osteoarthritis, are frequently adopted in occupational childcare. This study sought to define and quantify high flexion postures typically adopted in childcare to evaluate any increased likelihood of knee osteoarthritis development. Through video analysis of eighteen childcare workers caring for infant, toddler, and preschool-aged children, eight high knee flexion postures were identified and quantified by duration and frequency. An analysis of postural adoption by task was subsequently performed to determine which might pose the greatest risk for cumulative joint trauma. Childcare workers caring for children of all ages were found to adopt kneeling and seated postures for extended durations and at elevated frequencies, exceeding proposed thresholds for incidences of knee osteoarthritis development. Structured activities, playing, and feeding tasks demanded the greatest adoption of high flexion postures and should be evaluated to minimise the potential childcare-related risks of osteoarthritis. Practitioner summary: High knee flexion postures (kneeling, squatting, etc.) have been associated with increased incidences of knee injury yet are commonly adopted in childcare. Childcare workers' postures were examined through video analysis revealing that proposed adoption thresholds for knee health are commonly exceeded when caring for children of all ages. Abbreviations: OA: osteoarthritis; WSIB: workplace safety insurance board; CAD: Canadian Dollar; DK: dorsiflexed kneeling; PK: plantarflexed kneeling; SAK: single arm supported kneeling; DAK: double arm supported kneeling; FS: flatfoot squatting; HS: heels up squatting; FLRS: floor sitting; SS: side sitting or leaning; STLS: stool sitting; BR: bending and reaching.


Assuntos
Osteoartrite do Joelho , Canadá , Criança , Cuidado da Criança , Pré-Escolar , Humanos , Articulação do Joelho , Osteoartrite do Joelho/epidemiologia , Osteoartrite do Joelho/etiologia , Postura , Amplitude de Movimento Articular
13.
J Appl Biomech ; 37(6): 538-546, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34768237

RESUMO

The relationship between internal loading dose and low-back injury risk during lifting is well known. However, the implications of movement parameters that influence joint loading rates-movement frequency and speed-on time-dependent spine loading responses remain less documented. This study quantified the effect of loading rate and frequency on the tolerated cumulative loading dose and its relation to joint lifespan. Thirty-two porcine spinal units were exposed to biofidelic compression loading paradigms that differed by joint compression rate (4.2 and 8.3 kN/s) and frequency (30 and 60 cycles per minute). Cyclic compression testing was applied until failure was detected or 10,800 continuous cycles were tolerated. Instantaneous weighting factors were calculated to evaluate the cumulative load and Kaplan-Meier survival probability functions were examined following nonlinear dose normalization of the cyclic lifespan. Significant reductions in cumulative compression were tolerated when spinal units were compressed at 8.3 kN/s (P < .001, 67%) and when loaded at 30 cycles per minute (P = .008, 45%). There was a positive moderate relationship between cumulative load tolerance and normalized cyclic lifespan (R2 = .52), which was supported by joint survivorship functions. The frequency and speed of movement execution should be evaluated in parallel to loading dose for the management of low-back training exposures.


Assuntos
Vértebras Lombares , Movimento , Animais , Humanos , Região Lombossacral , Pressão , Suínos , Suporte de Carga
14.
JCI Insight ; 6(21)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34546977

RESUMO

We recently described a transtentorial venous system (TTVS), which to our knowledge was previously unknown, connecting venous drainage throughout the brain in humans. Prior to this finding, it was believed that the embryologic tentorial plexus regresses, resulting in a largely avascular tentorium. Our finding contradicted this understanding and necessitated further investigation into the development of the TTVS. Herein, we sought to investigate mice as a model to study the development of this system. First, using vascular casting and ex vivo micro-CT, we demonstrated that this TTVS is conserved in adult mice. Next, using high-resolution MRI, we identified the primitive tentorial venous plexus in the murine embryo at day 14.5. We also found that, at this embryologic stage, the tentorial plexus drains the choroid plexus. Finally, using vascular casting and micro-CT, we found that the TTVS is the dominant venous drainage in the early postnatal period (P8). Herein, we demonstrated that the TTVS is conserved between mice and humans, and we present a longitudinal study of its development. In addition, our findings establish mice as a translational model for further study of this system and its relationship to intracranial physiology.


Assuntos
Veias/anatomia & histologia , Veias/diagnóstico por imagem , Animais , Humanos , Camundongos
15.
J Biomech ; 127: 110659, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34385050

RESUMO

Soft tissue artifact in motion capture is widely accepted as a significant source of error in kinematic and kinetic measurements. Non-invasive methods of estimating soft tissue artifact, those requiring only motion capture, provide a feasible method to evaluate marker placement on a segment and enable recommendations for marker configurations which can minimize soft tissue artifact. The purpose of this study was to investigate the effect of thigh marker cluster location on soft tissue artifact during high knee flexion (>120 deg) as unique deformation of soft tissue occurs in this range (e.g. thigh-calf contact). Motion of the pelvis and lower limbs were recorded during squatting and kneeling in fifty participants. Six rigid marker clusters were affixed to the skin on the anterior, lateral, and anterolateral aspect, at the distal and middle third of the thighs. To estimate soft tissue artifact, the functional hip joint center was reconstructed relative to the pelvis cluster and each of the six thigh clusters throughout motion. The difference in the position of these two points was input into Bland-Altman analyses and compared between the thigh clusters. Across the tasks, the total mean difference ranged from 2.81 to 8.95 cm while the lower and upper limits of agreement ranged from -0.79 to 2.54 cm and 5.04 to 17.65 cm, respectively. Using this non-invasive method, the mid-anterolateral cluster was least susceptible to soft tissue artifact and thus would be recommended, while the lateral clusters were most susceptible and should avoided in high knee flexion and similar tasks.


Assuntos
Artefatos , Coxa da Perna , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Perna (Membro) , Amplitude de Movimento Articular
16.
J Biomech ; 123: 110512, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34015738

RESUMO

Close interface between humans and inanimate objects (furniture, assistive devices, and external loads) can obstruct line-of-sight in biomechanics studies that utilize optoelectronic motion capture systems. This specific problem is frequently encountered with the pelvis segment. This study sought to compare joint and pelvis angles computed from a pelvis-fixed local coordinate system (LCS) that was constructed from optically tracked pelvis landmarks (gold standard) and landmarks derived from angular deviations calculated from triaxial accelerometer data. One participant performed seven tasks: sitting, forward bend, sit-to-stand-to-sit, forward lunge, symmetrical squat, asymmetrical squat, and gait. The root mean square error (RMSE) and coefficient of determination (R2) were examined for the pelvis, lumbar spine, and hip joint angles calculated using the standard and accelerometer-based methods for creating a LCS. The RMSE values for global pelvis angles ranged from 2.2° (gait; R2 = 0.47) to 4.9° (sit-to-stand-to-sit; R2 = 0.98), 0.6° (sitting; R2 = 0.88) to 7.4° (gait; R2 = 0.39), and 1.5° (forward bend; R2 = 0.99) to 2.9° (sit-to-stand-to-sit; R2 = 0.99) for motion about the X, Y, and Z axes, respectively. The magnitude of error observed for adjacent joint motion was lowest about the Z axis for all tasks. In conclusion, the accelerometer-based LCS offers an alternative method for computing pelvis and adjacent joint angles without the reliance on a visual line-of-sight. For motion about the X and Y axes, time-series data derived with the accelerometer-based method may be less representative of discrete events, particularly for gait and lunging tasks.


Assuntos
Laboratórios , Pelve , Acelerometria , Fenômenos Biomecânicos , Humanos , Amplitude de Movimento Articular
17.
J Appl Biomech ; 37(3): 204-214, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690162

RESUMO

Movement pattern differences may contribute to differential injury or disease prevalence between individuals. The purpose of this study was to identify lower limb movement patterns in high knee flexion, a risk factor for knee osteoarthritis, and to investigate kinematic differences between males and females, as females typically develop knee osteoarthritis more commonly and severely than males. Lower extremity kinematic data were recorded from 110 participants completing 4 variations of squatting and kneeling. Principal component analysis was used to identify principal movements associated with the largest variability in the sample. Across the tasks, similar principal movements emerged at maximal flexion and during transitions. At maximal flexion, females achieved greater knee flexion, facilitated by a wider base of support, which may alter posterior and lateral tibiofemoral stress. Principal movements also detected differences in movement temporality between males and females. When these temporal differences occur due to alterations in movement velocity and/or acceleration, they may elicit changes in muscle activation and knee joint stress. Movement variability identified in the current study provides a framework for potential modifiable factors in high knee flexion, such as foot position, and suggests that kinematic differences between the sexes may contribute to differences in knee osteoarthritis progression.


Assuntos
Articulação do Joelho , Postura , Fenômenos Biomecânicos , Feminino , Humanos , Joelho , Masculino , Movimento , Amplitude de Movimento Articular
18.
Conserv Biol ; 35(2): 654-665, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32537779

RESUMO

Collisions with buildings cause up to 1 billion bird fatalities annually in the United States and Canada. However, efforts to reduce collisions would benefit from studies conducted at large spatial scales across multiple study sites with standardized methods and consideration of species- and life-history-related variation and correlates of collisions. We addressed these research needs through coordinated collection of data on bird collisions with buildings at sites in the United States (35), Canada (3), and Mexico (2). We collected all carcasses and identified species. After removing records for unidentified carcasses, species lacking distribution-wide population estimates, and species with distributions overlapping fewer than 10 sites, we retained 269 carcasses of 64 species for analysis. We estimated collision vulnerability for 40 bird species with ≥2 fatalities based on their North American population abundance, distribution overlap in study sites, and sampling effort. Of 10 species we identified as most vulnerable to collisions, some have been identified previously (e.g., Black-throated Blue Warbler [Setophaga caerulescens]), whereas others emerged for the first time (e.g., White-breasted Nuthatch [Sitta carolinensis]), possibly because we used a more standardized sampling approach than past studies. Building size and glass area were positively associated with number of collisions for 5 of 8 species with enough observations to analyze independently. Vegetation around buildings influenced collisions for only 1 of those 8 species (Swainson's Thrush [Catharus ustulatus]). Life history predicted collisions; numbers of collisions were greatest for migratory, insectivorous, and woodland-inhabiting species. Our results provide new insight into the species most vulnerable to building collisions, making them potentially in greatest need of conservation attention to reduce collisions and into species- and life-history-related variation and correlates of building collisions, information that can help refine collision management.


Correlaciones de las Colisiones de Aves contra Edificios en Tres Países de América del Norte Resumen Las colisiones contra los edificios causan hasta mil millones de fatalidades de aves al año en los Estados Unidos y en Canadá. Sin embargo, los esfuerzos por reducir estas colisiones se beneficiarían con estudios realizados a grandes escalas espaciales en varios sitios de estudio con métodos estandarizados y considerando las variaciones relacionadas a la historia de vida y a la especie y las correlaciones de las colisiones. Abordamos estas necesidades de investigación por medio de una recolección coordinada de datos sobre las colisiones de aves contra edificios en los Estados Unidos (35), Canadá (3) y México (2). Recolectamos todos los cadáveres y los identificamos hasta especie. Después de retirar los registros de cadáveres no identificados, las especies sin estimaciones poblacionales a nivel distribución y las especies con distribuciones traslapadas en menos de diez sitios, nos quedamos con 269 cadáveres de 64 especies para el análisis. Estimamos la vulnerabilidad a colisiones para 40 especies con ≥2 fatalidades con base en la abundancia poblacional para América del Norte, el traslape de su distribución entre los sitios de estudio y el esfuerzo de muestreo. De las diez especies que identificamos como las más vulnerables a las colisiones, algunas han sido identificadas previamente (Setophaga caerulescens), y otras aparecieron por primera vez (Sitta carolinensis), posiblemente debido a que usamos una estrategia de muestreo más estandarizada que en los estudios previos. El tamaño del edificio y el área del vidrio estuvieron asociados positivamente con el número de colisiones para cinco de ocho especies con suficientes observaciones para ser analizadas independientemente. La vegetación alrededor de los edificios influyó sobre las colisiones solamente para una de esas ocho especies Catharus ustulatus). Las historias de vida pronosticaron las colisiones; el número de colisiones fue mayor para las especies migratorias, insectívoras y aquellas que habitan en las zonas boscosas. Nuestros resultados proporcionan una nueva perspectiva hacia las especies más vulnerables a las colisiones contra edificios, lo que las pone en una necesidad potencialmente mayor de atención conservacionista para reducir estas colisiones y de estudio de las variaciones relacionadas con la especie y la historia de vida y las correlaciones de las colisiones contra edificios, información que puede ayudar a refinar el manejo de colisiones.


Assuntos
Conservação dos Recursos Naturais , Aves Canoras , Animais , Canadá , México , América do Norte , Estados Unidos
19.
J Biomech ; 113: 110081, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217697

RESUMO

Fatigue-failure in low back tissues is influenced by parameters of cyclic loading. Therefore, this study quantified the effect of loading rate and frequency on the number of tolerated compression cycles. Energy storage and vertical deformation were secondarily examined. Thirty-two porcine spinal units were randomly assigned to experimental groups that differed by loading rate (4.2 kN/s, 8.3 kN/s) and loading frequency (0.5 Hz, 1 Hz). Following preload and range-of-motion tests, specimens were cyclically loaded in a neutral posture until fatigue-failure occurred or 10800 cycles were tolerated. Macroscopic dissection was performed to identify the fracture morphology, and measurements of energy storage and vertical displacement were calculated throughout the specimen lifespan (1%, 10%, 50%, 90%, 99%). Given the differences in compression dose-force-time integral-between experimental conditions, the number of sustained cycles were assessed following linear and nonlinear dose-normalization via correction factors calculated from existing risk-exposure approximations. Without dose-normalization, an 8.3 kN/s loading rate and 0.5 Hz loading frequency reduced the fatigue lifetime by 3541 and 5977 cycles, respectively (p < 0.001). Linear and nonlinear dose-normalization resulted in a significant rate × frequency interaction (p < 0.001). For a 1 Hz loading frequency, the number of sustained loading cycles did not differ between loading rates (padj ≥ 0.988), but at 0.5 Hz, spinal units compressed at 8.3 kN/s sustained 99% (linear) and 97% (nonlinear) fewer cycles (padj < 0.001). These findings demonstrate that the interacting effects of loading frequency and loading rate on spinal fatigue-failure depend on the normalization of dose discrepancies between experimental groups.


Assuntos
Vértebras Cervicais , Postura , Animais , Fadiga , Estresse Mecânico , Suínos , Suporte de Carga
20.
Circ Res ; 111(10): 1286-96, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22914647

RESUMO

RATIONALE: Various types of viable stem cells have been reported to result in modest improvement in cardiac function after acute myocardial infarction. The mechanisms for improvement from different stem cell populations remain unknown. OBJECTIVE: To determine whether irradiated (nonviable) embryonic stem cells (iESCs) improve postischemic cardiac function without adverse consequences. METHODS AND RESULTS: After coronary artery ligation-induced cardiac infarction, either conditioned media or male murine or male human iESCs were injected into the penumbra of ischemic myocardial tissue of female mice or female rhesus macaque monkeys, respectively. Murine and human iESCs, despite irradiation doses that prevented proliferation and induced cell death, significantly improved cardiac function and decreased infarct size compared with untreated or media-treated controls. Fluorescent in situ hybridization of the Y chromosome revealed disappearance of iESCs within the myocardium, whereas 5-bromo-2'-deoxyuridine assays revealed de novo in vivo cardiomyocyte DNA synthesis. Microarray gene expression profiling demonstrated an early increase in metabolism, DNA proliferation, and chromatin remodeling pathways, and a decrease in fibrosis and inflammatory gene expression compared with media-treated controls. CONCLUSIONS: As a result of irradiation before injection, ex vivo and in vivo iESC existence is transient, yet iESCs provide a significant improvement in cardiac function after acute myocardial infarction. The mechanism(s) of action of iESCs seems to be related to cell-cell exchange, paracrine factors, and a scaffolding effect between iESCs and neighboring host cardiomyocytes.


Assuntos
Células-Tronco Embrionárias/citologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Transplante de Células-Tronco/métodos , Animais , Pressão Sanguínea/fisiologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/efeitos da radiação , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Sobrevivência de Enxerto/fisiologia , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos SCID , Contração Miocárdica/fisiologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/fisiologia , Transcriptoma , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...