Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(6): e10186, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37304366

RESUMO

Passive acoustic monitoring (PAM) is a cost-effective method for monitoring cetacean populations compared with techniques such as aerial and ship-based surveys. The Cetacean POrpoise Detector (C-POD) has become an integral tool in monitoring programs globally for over a decade, providing standardized metrics of occurrence that can be compared across time and space. However, the phasing out of C-PODs following the development of the new Full waveform capture POD (F-POD) with increased sensitivity, improved train detection, and reduced false-positive rates represents an important methodological change in data collection, particularly when being introduced into existing monitoring programs. Here, we compare the performance of the C-POD with that of its successor, the F-POD, co-deployed in a field setting for 15 months, to monitor harbor porpoise (Phocoena phocoena). While similar temporal trends in detections were found for both devices, the C-POD detected only 58% of the detection-positive minutes (DPM), recorded by the F-POD. Differences in detection rates were not consistent through time making it difficult to apply a correction factor or directly compare results obtained from the two PODs. Generalized additive models (GAMs) were used to test whether these differences in detection rates would have an effect on analyses of temporal patterns and environmental drivers of occurrence. No differences were found in seasonal patterns or the environmental correlates of porpoise occurrence (month, diel period, temperature, environmental noise, and tide). However, the C-POD failed to detect sufficient foraging rates to identify temporal patterns in foraging behavior, which were shown by the F-POD. Our results suggest that the switch to F-PODs will have little effect on determining broad-scale seasonal patterns of occurrence but may improve our understanding of fine-scale behaviors such as foraging. We highlight how care must be taken interpreting F-POD results as indicative of increased occurrence when used in time-series analysis.

2.
Ecol Evol ; 12(12): e9579, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36523532

RESUMO

Animal-borne telemetry devices provide essential insights into the life-history strategies of far-ranging species and allow us to understand how they interact with their environment. Many species in the seabird family Alcidae undergo a synchronous molt of all primary flight feathers during the non-breeding season, making them flightless and more susceptible to environmental stressors, including severe storms and prey shortages. However, the timing and location of molt remain largely unknown, with most information coming from studies on birds killed by storms or shot by hunters for food. Using light-level geolocators with saltwater immersion loggers, we develop a method for determining flightless periods in the context of the annual cycle. Four Atlantic puffins (Fratercula arctica) were equipped with geolocator/immersion loggers on each leg to attempt to overcome issues of leg tucking in plumage while sitting on the water, which confounds the interpretation of logger data. Light-level and saltwater immersion time-series data were combined to correct for this issue. This approach was adapted and applied to 40 puffins equipped with the standard practice deployments of geolocators on one leg only. Flightless periods consistent with molt were identified in the dual-equipped birds, whereas molt identification in single-equipped birds was less effective and definitive and should be treated with caution. Within the dual-equipped sample, we present evidence for two flightless molt periods per non-breeding season in two puffins that undertook more extensive migrations (>2000 km) and were flightless for up to 77 days in a single non-breeding season. A biannual flight feather molt is highly unusual among non-passerine birds and may be unique to birds that undergo catastrophic molt, i.e., become flightless when molting. Although our conclusions are based on a small sample, we have established a freely available methodological framework for future investigation of the molt patterns of this and other seabird species.

3.
Ecol Evol ; 11(18): 12349-12363, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34594504

RESUMO

Habitat selection and spatial usage are important components of animal behavior influencing fitness and population dynamic. Understanding the animal-habitat relationship is crucial in ecology, particularly in developing strategies for wildlife management and conservation. As this relationship is governed by environmental features and intra- and interspecific interactions, habitat selection of a population may vary locally between its core and edges. This is particularly true for central place foragers such as gray and harbor seals, where, in the Northeast Atlantic, the availability of habitat and prey around colonies vary at local scale. Here, we study how foraging habitat selection may vary locally under the influence of physical habitat features. Using GPS/GSM tags deployed at different gray and harbor seals' colonies, we investigated spatial patterns and foraging habitat selection by comparing trip characteristics and home-range similarities and fitting GAMMs to seal foraging locations and environmental data. To highlight the importance of modeling habitat selection at local scale, we fitted individual models to colonies as well as a global model. The global model suffered from issues of homogenization, while colony models showed that foraging habitat selection differed markedly between regions for both species. Despite being capable of undertaking far-ranging trips, both gray and harbor seals selected their foraging habitat depending on local availability, mainly based on distance from the last haul-out and bathymetry. Distance from shore and tidal current also influenced habitat preferences. Results suggest that local conditions have a strong influence on population spatial ecology, highlighting the relevance of processes occurring at fine geographical scale consistent with management within regional units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...