Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 342(1): 7-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973214

RESUMO

In 1830, Cuvier and Geoffroy Saint-Hilaire confronted each other in a famous debate on the unity of the animal kingdom, which permeated the zoology of the 19th century. From that time, a growing number of naturalists attempted to understand the large-scale relationships among animals. And among all the questions, that of the origin of vertebrates was one of the most controversial. Analytical methods based on comparative anatomy, embryology and paleontology were developed to identify convincing homologies that would reveal a logical sequence of events for the evolution of an invertebrate into the first vertebrate. Within this context, several theories have clashed on the question of the identity of the ancestor of vertebrates. Among the proposals, a group of rather discrete organisms, the ascidians, played a central role. Because he had discovered an ascidian with a particularly atypical larval development, the Molgula, Henri de Lacaze-Duthiers, a rigorous and meticulous naturalist, became involved in the ascidian hypothesis. While the visionary mind of Lacaze-Duthiers led him to establish a particularly innovative methodology and the first marine biology station in Europe, at Roscoff, the tailless tadpole of the Molgula prevented him from recognizing the ancestor of vertebrates. This old 19th century story echoes the ever-present questions driving the field of Eco-Evo-Devo.


Assuntos
Urocordados , Animais , Evolução Biológica , Vertebrados , Invertebrados
2.
Nat Commun ; 12(1): 1837, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758202

RESUMO

Oocytes are held in meiotic prophase for prolonged periods until hormonal signals trigger meiotic divisions. Key players of M-phase entry are the opposing Cdk1 kinase and PP2A-B55δ phosphatase. In Xenopus, the protein Arpp19, phosphorylated at serine 67 by Greatwall, plays an essential role in inhibiting PP2A-B55δ, promoting Cdk1 activation. Furthermore, Arpp19 has an earlier role in maintaining the prophase arrest through a second serine (S109) phosphorylated by PKA. Prophase release, induced by progesterone, relies on Arpp19 dephosphorylation at S109, owing to an unknown phosphatase. Here, we identified this phosphatase as PP2A-B55δ. In prophase, PKA and PP2A-B55δ are simultaneously active, suggesting the presence of other important targets for both enzymes. The drop in PKA activity induced by progesterone enables PP2A-B55δ to dephosphorylate S109, unlocking the prophase block. Hence, PP2A-B55δ acts critically on Arpp19 on two distinct sites, opposing PKA and Greatwall to orchestrate the prophase release and M-phase entry.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Meiose , Oócitos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Cromatografia Líquida , Feminino , Meiose/efeitos dos fármacos , Meiose/genética , Meiose/fisiologia , Proteínas Nucleares/metabolismo , Ácido Okadáico/toxicidade , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/genética , Fosforilação , Progesterona/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/isolamento & purificação , Proteínas Recombinantes , Espectrometria de Massas em Tandem , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genética , Proteínas de Xenopus/isolamento & purificação , Xenopus laevis
3.
C R Biol ; 344(4): 311-324, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35787603

RESUMO

On the occasion of the 200th anniversary of the birth of Henri de Lacaze-Duthiers, one of the most curious and active scientific minds among 19th century naturalists, this article retraces his scientific career and recalls the long-term changes he made in the practice of science: promotion of experimental zoology, foundation of a modern scientific journal and establishment of the marine stations of Roscoff and Banyuls.


À l'occasion du 200ème anniversaire de la naissance de Henri de Lacaze-Duthiers, l'un des esprits scientifiques les plus curieux et les plus actifs parmi les naturalistes du XIXe siècle, cet article retrace sa carrière scientifique et rappelle les tournants qu'il a durablement imprimés à la pratique de la science : promotion de la zoologie expérimentale, fondation dune revue scientifique moderne et édification des stations marines de Roscoff et de Banyuls.


Assuntos
Zoologia , Humanos , Masculino , Zoologia/história
4.
Cell Div ; 15: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508972

RESUMO

Cell division is orchestrated by the phosphorylation and dephosphorylation of thousands of proteins. These post-translational modifications underlie the molecular cascades converging to the activation of the universal mitotic kinase, Cdk1, and entry into cell division. They also govern the structural events that sustain the mechanics of cell division. While the role of protein kinases in mitosis has been well documented by decades of investigations, little was known regarding the control of protein phosphatases until the recent years. However, the regulation of phosphatase activities is as essential as kinases in controlling the activation of Cdk1 to enter M-phase. The regulation and the function of phosphatases result from post-translational modifications but also from the combinatorial association between conserved catalytic subunits and regulatory subunits that drive their substrate specificity, their cellular localization and their activity. It now appears that sequential dephosphorylations orchestrated by a network of phosphatase activities trigger Cdk1 activation and then order the structural events necessary for the timely execution of cell division. This review discusses a series of recent works describing the important roles played by protein phosphatases for the proper regulation of meiotic division. Many breakthroughs in the field of cell cycle research came from studies on oocyte meiotic divisions. Indeed, the meiotic division shares most of the molecular regulators with mitosis. The natural arrests of oocytes in G2 and in M-phase, the giant size of these cells, the variety of model species allowing either biochemical or imaging as well as genetics approaches explain why the process of meiosis has served as an historical model to decipher signalling pathways involved in the G2-to-M transition. The review especially highlights how the phosphatase PP2A-B55δ critically orchestrates the timing of meiosis resumption in amphibian oocytes. By opposing the kinase PKA, PP2A-B55δ controls the release of the G2 arrest through the dephosphorylation of their substrate, Arpp19. Few hours later, the inhibition of PP2A-B55δ by Arpp19 releases its opposing kinase, Cdk1, and triggers M-phase. In coordination with a variety of phosphatases and kinases, the PP2A-B55δ/Arpp19 duo therefore emerges as the key effector of the G2-to-M transition.

5.
Cells ; 9(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575604

RESUMO

The study of oocytes has made enormous contributions to the understanding of the G2/M transition. The complementarity of investigations carried out on various model organisms has led to the identification of the M-phase promoting factor (MPF) and to unravel the basis of cell cycle regulation. Thanks to the power of biochemical approaches offered by frog oocytes, this model has allowed to identify the core signaling components involved in the regulation of M-phase. A central emerging layer of regulation of cell division regards protein translation. Oocytes are a unique model to tackle this question as they accumulate large quantities of dormant mRNAs to be used during meiosis resumption and progression, as well as the cell divisions during early embryogenesis. Since these events occur in the absence of transcription, they require cascades of successive unmasking, translation, and discarding of these mRNAs, implying a fine regulation of the timing of specific translation. In the last years, the Xenopus genome has been sequenced and annotated, enabling the development of omics techniques in this model and starting its transition into the genomic era. This review has critically described how the different phases of meiosis are orchestrated by changes in gene expression. The physiological states of the oocyte have been described together with the molecular mechanisms that control the critical transitions during meiosis progression, highlighting the connection between translation control and meiosis dynamics.


Assuntos
Meiose/genética , Oócitos/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genômica , Meiose/fisiologia , Transdução de Sinais/fisiologia
6.
Cells ; 9(5)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392797

RESUMO

During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold. We focus on two model organisms, the amphibian Xenopus laevis, and the hydrozoan jellyfish Clytia hemisphaerica. Conserved mechanisms govern the initial meiotic programme of the oocyte prior to oocyte growth and also, much later, the onset of mitotic divisions, via activation of two key kinase systems: Cdk1-Cyclin B/Gwl (MPF) for M-phase activation and Mos-MAPkinase to orchestrate polar body formation and cytostatic (CSF) arrest. In contrast, maintenance of the prophase state of the fully-grown oocyte is assured by highly specific mechanisms, reflecting enormous variation between species in MIHs, MIH receptors and their immediate downstream signalling response. Convergence of multiple signalling pathway components to promote MPF activation in some oocytes, including Xenopus, is likely a heritage of the complex evolutionary history of spawning regulation, but also helps ensure a robust and reliable mechanism for gamete production.


Assuntos
Anuros/fisiologia , Pontos de Checagem do Ciclo Celular , Meiose , Oócitos/citologia , Cifozoários/citologia , Animais , Oócitos/metabolismo , Oogênese
12.
Cell Cycle ; 16(15): 1440-1452, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28722544

RESUMO

The small protein ARPP19 plays a dual role during oocyte meiosis resumption. In Xenopus, ARPP19 phosphorylation at S109 by PKA is necessary for maintaining oocytes arrested in prophase of the first meiotic division. Progesterone downregulates PKA, leading to the dephosphorylation of ARPP19 at S109. This initiates a transduction pathway ending with the activation of the universal inducer of M-phase, the kinase Cdk1. This last step depends on ARPP19 phosphorylation at S67 by the kinase Greatwall. Hence, phosphorylated by PKA at S109, ARPP19 restrains Cdk1 activation while when phosphorylated by Greatwall at S67, ARPP19 becomes an inducer of Cdk1 activation. Here, we investigate the functional interplay between S109 and S67-phosphorylations of ARPP19. We show that both PKA and Gwl phosphorylate ARPP19 independently of each other and that Cdk1 is not directly involved in regulating the biological activity of ARPP19. We also show that the phosphorylation of ARPP19 at S67 that activates Cdk1, is dominant over the inhibitory S109 phosphorylation. Therefore our results highlight the importance of timely synchronizing ARPP19 phosphorylations at S109 and S67 to fully activate Cdk1.


Assuntos
Oócitos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Feminino , Meiose/genética , Meiose/fisiologia , Mitose/genética , Mitose/fisiologia , Fosfoproteínas/genética , Fosforilação/genética , Fosforilação/fisiologia , Proteínas de Xenopus/genética , Xenopus laevis/genética
13.
J Cell Sci ; 128(14): 2482-96, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26092930

RESUMO

Vertebrate oocytes proceed through the first and the second meiotic division without an intervening S-phase to become haploid. Although DNA replication does not take place, unfertilized oocytes acquire the competence to replicate DNA one hour after the first meiotic division by accumulating an essential factor of the replicative machinery, Cdc6. Here, we show that the turnover of Cdc6 is precisely regulated in oocytes to avoid inhibition of Cdk1. At meiosis resumption, Cdc6 is expressed but cannot accumulate owing to a degradation mechanism that is activated through Cdk1. During transition from the first to the second meiotic division, Cdc6 is under the antagonistic regulation of B-type cyclins (which interact with and stabilize Cdc6) and the Mos-MAPK pathway (which negatively controls Cdc6 accumulation). Because overexpressing Cdc6 inhibits Cdk1 reactivation and drives oocytes into a replicative interphasic state, the fine-tuning of Cdc6 accumulation is essential to ensure two meiotic waves of Cdk1 activation and to avoid unscheduled DNA replication during meiotic maturation.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Meiose/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oócitos/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteínas Cromossômicas não Histona/genética , Replicação do DNA/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Oócitos/citologia , Proteínas de Xenopus/genética , Xenopus laevis
14.
Nat Commun ; 5: 3318, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24525567

RESUMO

During oogenesis, oocytes are arrested in prophase and resume meiosis by activating the kinase Cdk1 upon hormonal stimulation. In all vertebrates, release from prophase arrest relies on protein kinase A (PKA) downregulation and on the dephosphorylation of a long sought but still unidentified substrate. Here we show that ARPP19 is the PKA substrate whose phosphorylation at serine 109 is necessary and sufficient for maintaining Xenopus oocytes arrested in prophase. By downregulating PKA, progesterone, the meiotic inducer in Xenopus, promotes partial dephosphorylation of ARPP19 that is required for the formation of a threshold level of active Cdk1. Active Cdk1 then initiates the MPF autoamplification loop that occurs independently of both PKA and ARPP19 phosphorylation at serine 109 but requires the Greatwall (Gwl)-dependent phosphorylation of ARPP19 at serine 67. Therefore, ARPP19 stands at a crossroads in the meiotic M-phase control network by integrating differential effects of PKA and Gwl, two kinases essential for meiosis resumption.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Meiose/fisiologia , Fosfoproteínas/metabolismo , Animais , Fosforilação , Xenopus
15.
J Cell Sci ; 126(Pt 17): 3916-26, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23781026

RESUMO

Entry into mitosis or meiosis relies on the coordinated action of kinases and phosphatases that ultimately leads to the activation of Cyclin-B-Cdk1, also known as MPF for M-phase promoting factor. Vertebrate oocytes are blocked in prophase of the first meiotic division, an arrest that is tightly controlled by high PKA activity. Re-entry into meiosis depends on activation of Cdk1, which obeys a two-step mechanism: a catalytic amount of Cdk1 is generated in a PKA and protein-synthesis-dependent manner; then a regulatory network known as the MPF auto-amplification loop is initiated. This second step is independent of PKA and protein synthesis. However, none of the molecular components of the auto-amplification loop identified so far act independently of PKA. Therefore, the protein rendering this process independent of PKA in oocytes remains unknown. Using a physiologically intact cell system, the Xenopus oocyte, we show that the phosphorylation of ARPP19 at S67 by the Greatwall kinase promotes its binding to the PP2A-B55δ phosphatase, thus inhibiting its activity. This process is controlled by Cdk1 and has an essential role within the Cdk1 auto-amplification loop for entry into the first meiotic division. Moreover, once phosphorylated by Greatwall, ARPP19 escapes the negative regulation exerted by PKA. It also promotes activation of MPF independently of protein synthesis, provided that a small amount of Mos is present. Taken together, these findings reveal that PP2A-B55δ, Greatwall and ARPP19 are not only required for entry into meiotic divisions, but are also pivotal effectors within the Cdk1 auto-regulatory loop responsible for its independence with respect to the PKA-negative control.


Assuntos
Fator Promotor de Maturação/metabolismo , Oócitos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Regulação para Baixo , Feminino , Fator Promotor de Maturação/genética , Meiose/fisiologia , Fosforilação , Xenopus laevis/metabolismo
16.
Mol Cell Endocrinol ; 362(1-2): 110-9, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22687883

RESUMO

In the ovary, oocytes are surrounded by follicle cells and arrested in prophase of meiosis I. Although steroidogenic activity of follicle cells is involved in oogenesis regulation, clear qualitative and quantitative data about the steroid content of follicles are missing. We measured steroid levels of Xenopus oocytes and follicles by gas chromatography-mass spectrometry. We show that dehydroepiandrosterone sulfate is the main steroid present in oocytes. Lower levels of free steroids are also detected, e.g., androgens, whereas progesterone is almost undetectable. We propose that sulfatation is a protective mechanism against local variations of active steroids that could be deleterious for follicle-enclosed oocytes. Steroid levels were measured after LH stimulation, responsible for the release by follicle cells of a steroid signal triggering oocyte meiosis resumption. Oocyte levels of androgens rise slowly during meiosis re-entry whereas progesterone increases abruptly to micromolar concentration, therefore representing the main physiological mediator of meiosis resumption in Xenopus oocyte.


Assuntos
Sulfato de Desidroepiandrosterona/metabolismo , Meiose , Oócitos/metabolismo , Pregnenolona/metabolismo , Xenopus laevis/fisiologia , Animais , Sulfato de Desidroepiandrosterona/isolamento & purificação , Feminino , Hormônios Gonadais/isolamento & purificação , Hormônios Gonadais/metabolismo , Hormônios Gonadais/fisiologia , Hormônio Luteinizante/farmacologia , Hormônio Luteinizante/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Ovário/citologia , Ovulação , Pregnenolona/isolamento & purificação , Pregnenolona/fisiologia , Esteril-Sulfatase/antagonistas & inibidores , Ácidos Sulfônicos/farmacologia
17.
PLoS One ; 6(8): e23672, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858202

RESUMO

Ovulated eggs possess maternal apoptotic execution machinery that is inhibited for a limited time. The fertilized eggs switch off this time bomb whereas aged unfertilized eggs and parthenogenetically activated eggs fail to stop the timer and die. To investigate the nature of the molecular clock that triggers the egg decision of committing suicide, we introduce here Xenopus eggs as an in vivo system for studying the death of unfertilized eggs. We report that after ovulation, a number of eggs remains in the female body where they die by apoptosis. Similarly, ovulated unfertilized eggs recovered in the external medium die within 72 h. We showed that the death process depends on both cytochrome c release and caspase activation. The apoptotic machinery is turned on during meiotic maturation, before fertilization. The death pathway is independent of ERK but relies on activating Bad phosphorylation through the control of both kinases Cdk1 and JNK. In conclusion, the default fate of an unfertilized Xenopus egg is to die by a mitochondrial dependent apoptosis activated during meiotic maturation.


Assuntos
Apoptose , Proteína Quinase CDC2/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Óvulo/metabolismo , Proteínas de Xenopus/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Animais , Antracenos/farmacologia , Western Blotting , Butadienos/farmacologia , Proteína Quinase CDC2/genética , Caspases/metabolismo , Ciclina B/metabolismo , Citocromos c/metabolismo , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Nitrilas/farmacologia , Oócitos/citologia , Oócitos/metabolismo , Óvulo/citologia , Fosforilação/efeitos dos fármacos , Progesterona/farmacologia , Fatores de Tempo , Proteínas de Xenopus/genética , Xenopus laevis , Proteína de Morte Celular Associada a bcl/genética
18.
Development ; 138(17): 3735-44, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21795279

RESUMO

In fully grown oocytes, meiosis is arrested at first prophase until species-specific initiation signals trigger maturation. Meiotic resumption universally involves early activation of M phase-promoting factor (Cdc2 kinase-Cyclin B complex, MPF) by dephosphorylation of the inhibitory Thr14/Tyr15 sites of Cdc2. However, underlying mechanisms vary. In Xenopus oocytes, deciphering the intervening chain of events has been hampered by a sensitive amplification loop involving Cdc2-Cyclin B, the inhibitory kinase Myt1 and the activating phosphatase Cdc25. In this study we provide evidence that the critical event in meiotic resumption is a change in the balance between inhibitory Myt1 activity and Cyclin B neosynthesis. First, we show that in fully grown oocytes Myt1 is essential for maintaining prophase I arrest. Second, we demonstrate that, upon upregulation of Cyclin B synthesis in response to progesterone, rapid inactivating phosphorylation of Myt1 occurs, mediated by Cdc2 and without any significant contribution of Mos/MAPK or Plx1. We propose a model in which the appearance of active MPF complexes following increased Cyclin B synthesis causes Myt1 inhibition, upstream of the MPF/Cdc25 amplification loop.


Assuntos
Ciclina B/metabolismo , Meiose/fisiologia , Oócitos/citologia , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Western Blotting , Meiose/genética , Modelos Biológicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Xenopus , Proteínas de Xenopus/genética
19.
Results Probl Cell Differ ; 53: 219-34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21630148

RESUMO

Control of entry into mitosis has long been seen in terms of an explosive activation of cyclin-dependent kinase 1, the mitotic driver ensuring the phosphorylation of hundreds of proteins required for cell division. However, if these phosphorylations are maintained during M-phase, they must be removed when cells exit mitosis. It has been surmised that an "antimitotic" phosphatase must be inhibited to allow mitosis entry and activated for returning to interphase. This chapter discusses a series of recent works conducted on Xenopus egg extracts that provide the answers regarding the identity and the regulation of such a phosphatase. PP2A-B55δ is the major phosphatase controlling exit from mitosis; it is negatively regulated by the kinase Greatwall that phosphorylates the small protein ARPP-19 and converts it into a potent PP2A inhibitor. These findings provide a new element of paramount importance in the control of mitosis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Retroalimentação Fisiológica/fisiologia , Mitose/fisiologia , Fosfoproteínas/fisiologia , Proteína Fosfatase 2/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Feminino , Fosfoproteínas/metabolismo , Fosforilação/fisiologia , Proteína Fosfatase 2/antagonistas & inibidores , Xenopus laevis
20.
J Signal Transduct ; 2011: 350412, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21637374

RESUMO

In many cell types, the mitogen-activated protein kinase (MAPK) also named extracellular signal-regulated kinase (ERK) is activated in response to a variety of extracellular growth factor-receptor interactions and leads to the transcriptional activation of immediate early genes, hereby influencing a number of tissue-specific biological activities, as cell proliferation, survival and differentiation. In one specific cell type however, the female germ cell, MAPK does not follow this canonical scheme. In oocytes, MAPK is activated independently of growth factors and tyrosine kinase receptors, acts independently of transcriptional regulation, plays a crucial role in controlling meiotic divisions, and is under the control of a peculiar upstream regulator, the kinase Mos. Mos was originally identified as the transforming gene of Moloney murine sarcoma virus and its cellular homologue was the first proto-oncogene to be molecularly cloned. What could be the specific roles of Mos that render it necessary for meiosis? Which unique functions could explain the evolutionary cost to have selected one gene to only serve for few hours in one very specific cell type? This review discusses the original features of MAPK activation by Mos and the roles of this module in oocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...