Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Korean J Physiol Pharmacol ; 21(2): 169-177, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28280410

RESUMO

Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.

2.
J Pharmacol Sci ; 120(1): 45-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22971846

RESUMO

Ethanol is a wildly abused substance that causes various problems and damage in our society. We examined the connection between the action of ethanol and the endocannabinoid system in corticostriatal synaptic transmission by recording excitatory post-synaptic currents (EPSCs). Acute treatment of ethanol (100 mM) inhibited corticostriatal EPSCs. In the presence of AM 251 (5 µM), a cannabinoid 1 (CB(1))-receptor antagonist, or AM 404 (5 µM), a cannabinoid transporter inhibitor, the inhibition of corticostriatal EPSCs caused by ethanol was significantly reduced. This result suggests the possibility that the endocannabinoid system is involved in the action of ethanol. To support this result, brain slices were pre-treated with WIN 55,212-2 (1 µM), a CB(1)-receptor agonist, following treatment of ethanol or treated with WIN 55,212-2 alone. There was no significant difference between each other, indicating that when CB(1) receptors are previously activated, the effect of ethanol is blunted. These results suggest that the activation of the endocannabinoid system is one of the possible mechanisms involved in ethanol-induced corticostriatal synaptic depression.


Assuntos
Encéfalo/efeitos dos fármacos , Etanol/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Receptor CB1 de Canabinoide/fisiologia , Animais , Ácidos Araquidônicos/farmacologia , Benzoxazinas/farmacologia , Encéfalo/fisiologia , Canabinoides/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores
3.
Biol Pharm Bull ; 34(7): 1109-15, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21720021

RESUMO

Proanthocyanidin is a phenolic compound present in plants, that has antioxidant, antinociceptive, anti-emetic, and neuroprotective properties. We investigated the actions of proanthocyanidin from grape seeds on 5-hydroxytryptamine (5-HT)(3) receptors in NCB-20 neuroblastoma cells using a whole-cell voltage clamp technique. Co-treatment of proanthocyanidin (0.3-100 µg/ml) and 3 µM 5-HT (near EC(50)) produced a slight inhibition of 5-HT-induced inward peak current (I(5-HT)) in NCB-20 cells, but pretreatment with proanthocyanidin for 30 s before application of 5-HT induced a much larger inhibition of I(5-HT) in an irreversible, concentration- and time-dependent manner (IC(50)=6.5±0.4 µg/ml, Hill coefficient=2.5±0.1). Proanthocyanidin also produced a concentration-dependent inhibition of currents induced by 30 µM 5-HT, near-maximal concentration (IC(50)=22.1±0.4 µg/ml, Hill coefficient=2.4±0.1). High concentrations (≧30 µg/ml) of proanthocyanidin caused a concentration-dependent inhibition of the activation and desensitization of currents induced by 30 µM 5-HT. Further studies showed that pretreatment of 20 µg/ml proanthocyanidin caused not only a rightward shift of the dose-response curve for 5-HT (EC(50) shift from 2.7±0.4 to 6.2±0.5 µM), but also a decreased E(max) (inhibition by 37.5±1.3%). The proanthocyanidin-induced inhibition of 5-HT(3) receptors did not show a significant difference within the testing holding potential ranges (-50-+30 mV). These results suggest that proanthocyanidin inhibits 5-HT(3) receptor function in NCB-20 cells in a noncompetitive mode, and that this inhibitory effect of proanthocyanidin probably contributes to the pharmacological actions of proanthocyanidin.


Assuntos
Proantocianidinas/farmacologia , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Sementes/química , Vitis/química , Linhagem Celular Tumoral , Humanos , Antagonistas da Serotonina/farmacologia , Vitis/embriologia
4.
Korean J Physiol Pharmacol ; 13(3): 209-14, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19885039

RESUMO

The striatum receives glutamatergic afferents from the cortex and thalamus, and these synaptic transmissions are mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors. The purpose of this study was to characterize glutamate receptors by analyzing NMDA/AMPA ratio and rectification of AMPA and NMDA excitatory postsynaptic currents (EPSCs) using a whole-cell voltage-clamp method in the dorsal striatum. Receptor antagonists were used to isolate receptor or subunit specific EPSC, such as (DL)-2-amino-5-phosphonovaleric acid (APV), an NMDA receptor antagonist, ifenprodil, an NR2B antagonist, CNQX, an AMPA receptor antagonist and IEM-1460, a GluR2-lacking AMPA receptor blocker. AMPA and NMDA EPSCs were recorded at -70 and +40 mV, respectively. Rectification index was calculated by current ratio of EPSCs between +50 and -50 mV. NMDA/AMPA ratio was 0.20+/-0.05, AMPA receptor ratio of GluR2-lacking/GluR2-containing subunit was 0.26+/-0.05 and NMDA receptor ratio of NR2B/NR2A subunit was 0.32+/-0.03. The rectification index (control 2.39+/-0.27) was decreased in the presence of both APV and combination of APV and IEM-1460 (1.02+/-0.11 and 0.93+/-0.09, respectively). These results suggest that the major components of the striatal glutamate receptors are GluR2-containing AMPA receptors and NR2A-containing NMDA receptors. Our results may provide useful information for corticostriatal synaptic transmission and plasticity studies.

5.
J Pharmacol Sci ; 107(1): 57-65, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18460823

RESUMO

The pharmacological action of riluzole, a drug that has been approved as a neuroprotective agent for the treatment of amyotrophic lateral sclerosis, has not yet been established. We examined the effects of riluzole on 5-hydroxytryptamine (5-HT)3) receptors in NCB-20 neuroblastoma cells using the whole-cell voltage clamp technique combined with a fast drug application method. Co-application of riluzole (1 - 300 microM, 5 s) produced a dose-dependent reduction in peak amplitudes and in the rise slope of the currents induced by 2 microM 5-HT. In addition, 5-HT3-mediated currents evoked by dopamine, a partial 5-HT3-receptor agonist, were inhibited by riluzole co-application. These inhibitory effects were clearly shown at low concentrations of 5-HT. The decay time constants of the receptor desensitization and deactivation were also significantly attenuated by riluzole. G-protein inhibitors (pertussis toxin and guanosine 5'-[beta-thio] diphosphate) did not completely block these inhibitory actions of riluzole. These results indicate that riluzole inhibits 5-HT3-induced ion currents directly by slowing channel activation in NCB-20 neuroblastoma cells.


Assuntos
Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Riluzol/farmacologia , Antagonistas do Receptor 5-HT3 de Serotonina , Antagonistas da Serotonina/farmacologia , Serotonina/metabolismo , Animais , Linhagem Celular Tumoral , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Potenciais da Membrana , Técnicas de Patch-Clamp , Receptores 5-HT3 de Serotonina/metabolismo , Fatores de Tempo
6.
Korean J Physiol Pharmacol ; 12(6): 293-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19967070

RESUMO

The effect of forskolin on corticostriatal synaptic transmission was examined by recording excitatory postsynaptic currents (EPSCs) in rat brain slices using the whole-cell voltage-clamp technique. Forskolin produced a dose-dependent increase of corticostriatal EPSCs (1, 3, 10, and 30 microM) immediately after its treatment, and the increase at 10 and 30 microM was maintained even after its washout. When the brain slices were pre-treated with (DL)-2-amino-5-phosphonovaleric acid (AP-V, 100 microM), an NMDA receptor antagonist, the acute effect of forskolin (10 microM) was blocked. However, after washout of forskolin, an increase of corticostriatal EPSCs was still observed even in the presence of AP-V. When KT 5720 (5 microM), a protein kinase A (PKA) inhibitor, was applied through the patch pipette, forskolin (10 microM) increased corticostriatal EPSCs, but this increase was not maintained. When forskolin was applied together with AP-V and KT 5720, both the increase and maintenance of the corticostriatal EPSCs were blocked. These results suggest that forskolin activates both NMDA receptors and PKA, however, in a different manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...