Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38674658

RESUMO

Shortly after the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cases of viral, bacterial, and fungal coinfections in hospitalized patients became evident. This retrospective study investigates the prevalence of multiple pathogen co-detections in 1472 lower respiratory tract (LRT) samples from 229 SARS-CoV-2-positive patients treated in the largest intensive care unit (ICU) in Slovenia. In addition to SARS-CoV-2, (rt)RT-PCR tests were used to detect cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV), and atypical bacteria: Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella pneumophila/spp. At least one co-detection was observed in 89.1% of patients. EBV, HSV-1, and CMV were the most common, with 74.7%, 58.1%, and 38.0% of positive patients, respectively. The median detection time of EBV, HSV-1, and CMV after initial SARS-CoV-2 confirmation was 11 to 20 days. Bronchoalveolar lavage (BAL) and tracheal aspirate (TA) samples showed equivalent performance for the detection of EBV, CMV, and HSV-1 in patients with both available samples. Our results indicate that SARS-CoV-2 infection could be a risk factor for latent herpesvirus reactivation, especially HSV-1, EBV, and CMV. However, additional studies are needed to elucidate the clinical importance of these findings.

2.
Front Public Health ; 11: 1066934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033037

RESUMO

A nasopharyngeal swab (NPS) is the most frequently collected sample type when molecular diagnosis of respiratory viruses, including SARS CoV-2, is required. An optimal collection technique would provide sufficient sample quality for the diagnostic process and would minimize the discomfort felt by the patient. This study compares a simplified NPS collection procedure with only one rotation of the swab to a more standard procedure with five rotations. Swabs were collected from 76 healthy volunteers by the same healthcare professional on 2 consecutive days at a similar hour to minimize variability. The number of Ubiquitin C copy number per sample was measured by real-time quantitative PCR and patient discomfort was assessed by questionnaire. No statistically significant difference (p = 0.15) was observed in the Ubiquitin C copy number per sample between a NPS collected with one rotation (5.2 ± 0.6 log UBC number copies/sample) or five rotations (5.3 ± 0.5 log UBC number copies/sample). However, a statistically significant difference was observed in discomfort between these two procedures, the second being much more uncomfortable. Additional analysis of the results showed a weak correlation between discomfort and the number of human cells recovered (Spearman's rho = 0.202) and greater discomfort in younger people. The results of this study show that a NPS collected with one slow rotation has the same quality as a NPS collected with five rotations. However, the collection time is shorter and, most importantly, less unpleasant for patients.


Assuntos
COVID-19 , Humanos , Ubiquitina C , Nasofaringe , SARS-CoV-2 , Manejo de Espécimes/métodos
3.
Microorganisms ; 11(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985353

RESUMO

This study determines and compares the frequency of human mastadenovirus (HAdV) presence in children with acute bronchiolitis (AB), acute gastroenteritis (AGE), and febrile seizures (FS), ascertains types of HAdVs associated with each individual syndrome and contrasts the findings with a control group of children. The presence of HAdVs was ascertained in simultaneously collected nasopharyngeal (NP) swabs and stool samples amplifying the hexon gene by RT-PCR; these were sequenced to determine the types of HAdVs. HAdVs were grouped into eight different genotypes. Of these, three (F40, F41, and A31) were found solely in stool samples, whereas the others (B3, C1, C2, C5, and C6) were found in both stool samples and NP swabs. The most common genotypes in NP swabs were C2 (found in children with AGE and FS) and C1 (only in children with FS), whereas in stool samples genotypes F41 (in children with AGE) and C2 (in children with AGE and FS) prevailed, and C2 was simultaneously present in both samples. HAdVs were more often detected in stool samples than in NP swabs in patients (with the highest estimated viral load in stool samples in children with AB and AGE) and healthy controls and were more common in NP swabs in children with AGE than in children with AB. In most patients, the characterized genotypes in NP swabs and stool samples were in concordance.

4.
Viruses ; 14(7)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35891511

RESUMO

The clinical symptoms caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are nonspecific and can be associated with most other respiratory viruses that cause acute respiratory tract infections (ARI). Because the clinical differentiation of COVID-19 patients from those with other respiratory viruses is difficult, the evaluation of automated methods to detect important respiratory viruses together with SARS-CoV-2 seems necessary. Therefore, this study compares two molecular assays for the detection of respiratory viruses, including SARS-CoV-2: the Respiratory Viruses 16-Well Assay (AusDiagnostics, Pty Ltd., Mascot, Australia) and the Allplex™ RV Essential Assay coupled with the Allplex™-nCoV Assay (Seegene Inc., Seoul, Korea). The two methods (AusDiagnostics and AlplexTM-nCoV Assay SARS-CoV-2) had 98.6% agreement with the reference method, cobas 6800, for the detection of SARS-CoV-2. Agreement between the AusDiagnostics assay and the AlplexTM RV Essential Assay for the detection of seven respiratory viruses was 99%. In our experience, the Respiratory Viruses 16-Well Assay proved to be the most valuable and useful medium-throughput method for simultaneous detection of important respiratory viruses and SARS-CoV-2. The main advantages of the method are high specificity for all targets included and their simultaneous detection and medium throughput with the option of having multiple instruments provide a constant run.


Assuntos
COVID-19 , Vírus , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , SARS-CoV-2/genética , Sensibilidade e Especificidade
5.
J Med Virol ; 94(10): 4704-4711, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35642439

RESUMO

A prospective cohort study was conducted during the Delta and Omicron severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) epidemic waves from paired nasopharyngeal swab (NPS or NP swab) and saliva samples taken from 624 participants. The study aimed to assess if any differences among participants from both waves could be observed and if any difference in molecular diagnostic performance could be observed among the two sample types. Samples were transported immediately to the laboratory to ensure the highest possible sample quality without any freezing and thawing steps before processing. Nucleic acids from saliva and NPS were prospectively extracted and SARS-CoV-2 was detected using a real-time reverse-transcription polymerase chain reaction. All observed results were statistically analyzed. Although the results obtained with NP and saliva agreed overall, higher viral loads were observed in NP swabs regardless of the day of specimen collection in both SARS-CoV-2 epidemic waves. No significant difference could be observed between the two epidemic waves characterized by Delta or Omicron SARS-CoV-2. To note, Delta infection resulted in higher viral loads both in NP and saliva and more symptoms, including rhinorrhea, cough, and dyspnea, whereas Omicron wave patients more frequently reported sore throat. An increase in the mean log RNA of SARS-CoV-2 was observed with the number of expressed symptoms in both waves, however, the difference was not significant. Data confirmed that results from saliva were concordant with those from NP swabs, although saliva proved to be a challenging sample with frequent inhibitions that required substantial retesting.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Nasofaringe , Estudos Prospectivos , SARS-CoV-2/genética , Saliva , Manejo de Espécimes/métodos
6.
Viruses ; 13(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920821

RESUMO

Coronaviruses (CoV) are widely distributed pathogens of human and animals and can cause mild or severe respiratory and gastrointestinal disease. Antigenic and genetic similarity of some CoVs within the Betacoronavirus genus is evident. Therefore, for the first time in Slovenia, we investigated the genetic diversity of partial 390-nucleotides of RNA-dependent-RNA polymerase gene (RdRp) for 66 human (HCoV) and 24 bovine CoV (BCoV) positive samples, collected between 2010 and 2016 from human patients and cattle with respiratory disease. The characterized CoV strains belong to four different clusters, in three separate human clusters HCoV-HKU1 (n = 34), HCoV-OC43 (n = 31) and HCoV 229E (n = 1) and bovine grouping only as BCoVs (n = 24). BCoVs from cattle and HCoV-OC43 were genetically the most closely related and share 96.4-97.1% nucleotide and 96.9-98.5% amino acid identity.


Assuntos
Doenças dos Bovinos/virologia , Coronavirus/classificação , Coronavirus/genética , Animais , Bovinos , Doenças dos Bovinos/transmissão , Coronavirus Humano 229E/genética , Infecções por Coronavirus/transmissão , Coronavirus Humano OC43/genética , Coronavirus Bovino/genética , Feminino , Variação Genética , Humanos , Masculino , Eslovênia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...