Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 237(2): 345-361, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31646346

RESUMO

RATIONALE: A role of group I metabotropic glutamate receptor 5 (mGlu5) in regulating spontaneous locomotion and psychostimulant-induced hyperactivity has been proposed. OBJECTIVES: This study aims to determine if mGlu5 in GABAergic neurons regulates spontaneous or psychostimulant-induced locomotion. METHODS: We generated mice specifically lacking mGlu5 in forebrain GABAergic neuron by crossing DLX-Cre mice with mGlu5flox/flox mice to generate DLX-mGlu5 KO mice. The locomotion of adult mice was examined in the open-field assay (OFA) and home cage setting. The effects of the mGlu5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP), cocaine, and methylphenidate on acute motor behaviors in DLX-mGlu5 KO and littermate control mice were assessed in OFA. Striatal synaptic plasticity of these mice was examined with field potential electrophysiological recordings. RESULTS: Deleting mGlu5 from forebrain GABAergic neurons results in failure to induce long-term depression (LTD) in the dorsal striatum and absence of habituated locomotion in both novel and familiar settings. In a familiar environment (home cage), DLX-mGlu5 KO mice were hyperactive. In the OFA, DLX-mGlu5 KO mice exhibited initial hypo-activity, and then gradually increased their locomotion with time, resulting in no habituation response. DLX-mGlu5 KO mice exhibited almost no locomotor response to MPEP (40 mg/kg), while the same dose elicited hyperlocomotion in control mice. The DLX-mGlu5 KO mice also showed reduced hyperactivity response to cocaine, while they retained normal hyperactivity response to methylphenidate, albeit with delayed onset. CONCLUSION: mGlu5 in forebrain GABAergic neurons is critical to trigger habituation upon the initiation of locomotion as well as to mediate MPEP-induced hyperlocomotion and modulate psychostimulant-induced hyperactivity.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/metabolismo , Neurônios GABAérgicos/metabolismo , Locomoção/fisiologia , Prosencéfalo/metabolismo , Receptor de Glutamato Metabotrópico 5/deficiência , Animais , Corpo Estriado/efeitos dos fármacos , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Prosencéfalo/efeitos dos fármacos , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Peixe-Zebra
2.
Future Neurol ; 6(4): 459-480, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22229018

RESUMO

Cannabis is the most commonly used illicit substance among pregnant women. Human epidemiological and animal studies have found that prenatal cannabis exposure influences brain development and can have long-lasting impacts on cognitive functions. Exploration of the therapeutic potential of cannabis-based medicines and synthetic cannabinoid compounds has given us much insight into the physiological roles of endogenous ligands (endocannabinoids) and their receptors. In this article, we examine human longitudinal cohort studies that document the long-term influence of prenatal exposure to cannabis, followed by an overview of the molecular composition of the endocannabinoid system and the temporal and spatial changes in their expression during brain development. How endocannabinoid signaling modulates fundamental developmental processes such as cell proliferation, neurogenesis, migration and axonal pathfinding are also summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...