Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Elite Ed) ; 2(1): 111-21, 2010 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-20036860

RESUMO

Enhanced external counterpulsation (EECP) is used for the treatment of severe angina and heart failure in patients who are not candidates for revascularization. The clinical benefits of EECP extend well beyond the time period of any hemodynamic effects, but the cause of this prolonged effect is not understood. The prolonged clinical benefits suggest EECP could be a regenerative therapy. This study was performed to determine whether EECP increased circulating hematopoietic progenitor cells (HPCs) or endothelial progenitor cells (EPCs) and thus be a possible regenerative therapy. The proposed mechanism of the increase in regenerative circulating stem cells is the enhanced shear forces induced on the endothelial boundary by the flow reversal produced by the sequential inflation of the pneumatic cuffs during EECP therapy.


Assuntos
Angina Pectoris/terapia , Proliferação de Células , Contrapulsação/métodos , Células Endoteliais/citologia , Insuficiência Cardíaca/terapia , Células-Tronco Hematopoéticas/citologia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Velocidade do Fluxo Sanguíneo , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Medicina Regenerativa/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-16787194

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) represent a clinically important class of agents. NSAIDs are commonly used in treatment of conditions such as headache, fever, inflammation and joint pain. Complications often arise from chronic use of NSAIDs. Gastrointestinal (GI) toxicity in the form of gastritis, peptic erosions and ulcerations and GI bleeds limit usage of NSAIDs. These toxicities are thought to be due to cyclooxygenase (COX)-1 blockade. COX-1 generates cytoprotective prostanoids such as prostaglandin (PG) E2 and prostacyclin (PGI2). COX-2 inhibitors, commonly referred to as coxibs, were developed to inhibit inflammatory prostanoids without interfering with production of COX-1 prostanoids. Concerns over cardiovascular safety, however, have evolved based on the concept of inhibition of COX-2-derived endothelial prostanoids without inhibition of platelet thromboxane A2, leading to increased cardiovascular risk. The Celecoxib Long-Term Arthritis Safety Study (CLASS) trial did not show a significant increase in cardiovascular risk for celecoxib (Celebrex), but results of the Vioxx Gastrointestinal Outcomes Research (VIGOR) study showed an increased cardiovascular risk with long-term daily usage of rofecoxib in patients with rheumatoid arthritis. The Adenomatous Poly Prevention on Vioxx (APPROVe) trial further evaluated cardiovascular effects of rofecoxib and recently led to removal of this drug from the marketplace. Coxibs affect renal function via blockade of normal COX-2 functions. COX-2 expression increases in high renin states and in response to a high-sodium diet or water deprivation. PGI2 and PGE2 are the most important renal prostanoids. PGI2 inhibition results in hyperkalemia. PGE2 inhibition results in sodium retention, which leads to hypertension, peripheral edema and potentially exacerbation of heart failure. This review article discusses beneficial and deleterious effects associated with prostanoids produced by COX-1 and COX-2 in various organs and how blockade of these products translates into clinical medicine.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Ensaios Clínicos como Assunto , Qualidade de Produtos para o Consumidor , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Humanos
3.
Cardiovasc Hematol Agents Med Chem ; 4(2): 129-53, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16611048

RESUMO

Aldosterone is a mineralocorticoid primarily produced in the zona glomerulosa of the adrenal gland. For many years, aldosterone (Aldo) was thought to have its sole site of action in the kidney, where it regulated sodium excretion and potassium reabsorption. It is now known that Aldo is produced in cardiovascular tissues, and has been implicated in the development of ventricular hypertrophy and cardiac fibrosis. The precise mechanisms whereby Aldo acts in cardiac tissues are diverse. It was assumed that Aldo production could be limited by angiotensin-converting enzyme (ACE) inhibition, but serial measurements during therapy reveal only a transient decrease in Aldo levels. Moreover, the effects of Aldo on cardiac tissues occur even when angiotensin II (Ang II) has been suppressed or eliminated. Multiple investigators have examined effects of Aldo receptor blockade in human subjects and various animal models using the two Aldo receptor antagonists (ARAs), spironolactone and eplerenone. Major clinical trials involving spironolactone (RALES) and eplerenone (EPHESUS) ARAs have shown significant benefits in the treatment of congestive heart failure (CHF). In RALES, patients with New York Heart Association (NYHA) Class III or IV systolic heart failure treated with spironolactone had a 30% relative risk decrease in mortality. Although spironolactone is an effective competitive inhibitor of the mineralocorticoid receptor (MR), progestational and antiandrogenic side effects limit its use in some patients. Eplerenone, a more selective ARA, lacks these undesirable side effects. Although eplerenone is 20-fold less potent at the MR, it demonstrates efficacy similar to spironolactone, possibly due to decreased protein binding. Eplerenone has fewer side effects than spironolactone, which has been attributed to the low cross-reactivity with androgen and progesterone receptors. In EPHESUS, patients with left ventricular systolic dysfunction [Ejection Fraction (EF) <40%] and CHF following an acute myocardial infarction (AMI), were treated with eplerenone, resulting in a 17% reduction in cardiovascular mortality. However, these studies were limited in that diastolic function was not evaluated, although approximately 1/2 of CHF is due to diastolic dysfunction alone. To date, neither ARA has been studied for the treatment of diastolic dysfunction in a major clinical trial. However, numerous animal studies employing ARAs have shown a decrease in cardiac hypertrophy and fibrosis, indicating the potential benefits of these agents in the treatment of diastolic heart failure. In this review, we discuss possible underlying mechanisms responsible for Aldo effects on cardiovascular function and compare the beneficial effects of spironolactone and eplerenone in the treatment of heart disease.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides , Aldosterona/fisiologia , Doenças Cardiovasculares/fisiopatologia , Feminino , Humanos , Masculino , Espironolactona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...