Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2145, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059735

RESUMO

Societally relevant weather impacts typically result from compound events, which are rare combinations of weather and climate drivers. Focussing on four event types arising from different combinations of climate variables across space and time, here we illustrate that robust analyses of compound events - such as frequency and uncertainty analysis under present-day and future conditions, event attribution to climate change, and exploration of low-probability-high-impact events - require data with very large sample size. In particular, the required sample is much larger than that needed for analyses of univariate extremes. We demonstrate that Single Model Initial-condition Large Ensemble (SMILE) simulations from multiple climate models, which provide hundreds to thousands of years of weather conditions, are crucial for advancing our assessments of compound events and constructing robust model projections. Combining SMILEs with an improved physical understanding of compound events will ultimately provide practitioners and stakeholders with the best available information on climate risks.

2.
Proc Natl Acad Sci U S A ; 120(13): e2214525120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943887

RESUMO

Diagnosing dynamical changes in the climate system, such as those in atmospheric circulation patterns, remains challenging. Here, we study 1950 to 2021 trends in the frequency of occurrence of atmospheric circulation patterns over the North Atlantic. Roughly 7% of atmospheric circulation patterns display significant occurrence trends, yet they have major impacts on surface climate. Increasingly frequent patterns drive heatwaves across Europe and enhanced wintertime storminess in the northern part of the continent. Over 91% of recent heatwave-related deaths and 33% of high-impact windstorms in Europe were concurrent with increasingly frequent atmospheric circulation patterns. While the trends identified are statistically significant, they are not necessarily anthropogenic. Atmospheric patterns which are becoming rarer correspond instead to wet, cool summer conditions over northern Europe and wet winter conditions over continental Europe. The combined effect of these circulation changes is that of a strong, dynamically driven year-round warming over most of the continent and large regional and seasonal changes in precipitation and surface wind.

3.
Chaos ; 30(5): 051107, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32491888

RESUMO

Despite the importance of having robust estimates of the time-asymptotic total number of infections, early estimates of COVID-19 show enormous fluctuations. Using COVID-19 data from different countries, we show that predictions are extremely sensitive to the reporting protocol and crucially depend on the last available data point before the maximum number of daily infections is reached. We propose a physical explanation for this sensitivity, using a susceptible-exposed-infected-recovered model, where the parameters are stochastically perturbed to simulate the difficulty in detecting patients, different confinement measures taken by different countries, as well as changes in the virus characteristics. Our results suggest that there are physical and statistical reasons to assign low confidence to statistical and dynamical fits, despite their apparently good statistical scores. These considerations are general and can be applied to other epidemics.


Assuntos
Infecções Assintomáticas/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Processos Estocásticos , Betacoronavirus , COVID-19 , China , Saúde Global , Humanos , Modelos Estatísticos , Dinâmica não Linear , Pandemias , SARS-CoV-2
4.
Nat Commun ; 11(1): 2870, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513943

RESUMO

The severe drought of the 1930s Dust Bowl decade coincided with record-breaking summer heatwaves that contributed to the socio-economic and ecological disaster over North America's Great Plains. It remains unresolved to what extent these exceptional heatwaves, hotter than in historically forced coupled climate model simulations, were forced by sea surface temperatures (SSTs) and exacerbated through human-induced deterioration of land cover. Here we show, using an atmospheric-only model, that anomalously warm North Atlantic SSTs enhance heatwave activity through an association with drier spring conditions resulting from weaker moisture transport. Model devegetation simulations, that represent the wide-spread exposure of bare soil in the 1930s, suggest human activity fueled stronger and more frequent heatwaves through greater evaporative drying in the warmer months. This study highlights the potential for the amplification of naturally occurring extreme events like droughts by vegetation feedbacks to create more extreme heatwaves in a warmer world.

5.
Sci Rep ; 9(1): 2859, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814625

RESUMO

Many attribution studies of precipitation extreme events have attempted to estimate the thermodynamic contribution (linked to temperature changes) and the dynamic contribution (linked to the atmospheric circulation). Those studies are based on statistical decompositions of atmospheric fields, and essentially focus on the horizontal motion of the atmosphere. This paper proposes a framework that decomposes those terms from first physical principles, which include the vertical atmospheric motion that has often been overlooked. The goal is to take into account the driving processes of the extreme event. We revisit a recent example of extreme precipitation that was extensively investigated through its relation with the atmospheric circulation. We find that although the horizontal motion plays a minor (but important) role, the vertical motion yields a dominating contribution to the event that is larger than the thermodynamic contribution. This analysis quantifies the processes leading to high winter precipitation rates, and can be extended for further attribution studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...