Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Microorganisms ; 11(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838453

RESUMO

So far, Bacillus species bacteria are being used as bacteria concentrates, supplementing cleaning preparations in order to reduce odor and expel pathogenic bacteria. Here, we discuss the potential of Bacillus species as 'natural' probiotics and evaluate their microbiological characteristics. An industrially used microbiological concentrates and their components of mixed Bacillus species cultures were tested, which may be a promising bacteria source for food probiotic preparation for supplementary diet. In this study, antagonistic activities and probiotic potential of Bacillus species, derived from an industrial microbiological concentrate, were demonstrated. The cell free supernatants (CFS) from Bacillus licheniformis mostly inhibited the growth of foodborne pathogenic bacteria, such as Escherichia coli O157:H7 ATCC 35150, Salmonella Enteritidis KCCM 12021, and Staphylococcus aureus KCCM 11335, while some of Bacillus strains showed synergistic effect with foodborne pathogenic bacteria. Moreover, Bacillus strains identified by the MALDI TOF-MS method were found sensitive to chloramphenicol, kanamycin, and rifampicin. B. licheniformis and B. cereus displayed the least sensitivity to the other tested antibiotics, such as ampicillin, ampicillin and sulfbactam, streptomycin, and oxacillin and bacitracin. Furthermore, some of the bacterial species detected extended their growth range from the mesophilic to moderately thermophilic range, up to 54 °C. Thus, their potential sensitivity to thermophilic TP-84 bacteriophage, infecting thermophilic Bacilli, was tested for the purpose of isolation a new bacterial host for engineered bionanoparticles construction. We reason that the natural environmental microflora of non-pathogenic Bacillus species, especially B. licheniformis, can become a present probiotic remedy for many contemporary issues related to gastrointestinal tract health, especially for individuals under metabolic strain or for the increasingly growing group of lactose-intolerant people.

3.
Microorganisms ; 9(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34361957

RESUMO

Bacteriophages of thermophiles are of increasing interest owing to their important roles in many biogeochemical, ecological processes and in biotechnology applications, including emerging bionanotechnology. However, due to lack of in-depth investigation, they are underrepresented in the known prokaryotic virosphere. Therefore, there is a considerable potential for the discovery of novel bacteriophage-host systems in various environments: marine and terrestrial hot springs, compost piles, soil, industrial hot waters, among others. This review aims at providing a reference compendium of thermophages characterized thus far, which infect the species of thermophilic 'Bacillus group' bacteria, mostly from Geobacillus sp. We have listed 56 thermophages, out of which the majority belong to the Siphoviridae family, others belong to the Myoviridae and Podoviridae families and, apparently, a few belong to the Sphaerolipoviridae, Tectiviridae or Corticoviridae families. All of their genomes are composed of dsDNA, either linear, circular or circularly permuted. Fourteen genomes have been sequenced; their sizes vary greatly from 35,055 bp to an exceptionally large genome of 160,590 bp. We have also included our unpublished data on TP-84, which infects Geobacillus stearothermophilus (G. stearothermophilus). Since the TP-84 genome sequence shows essentially no similarity to any previously characterized bacteriophage, we have defined TP-84 as a new species in the newly proposed genus Tp84virus within the Siphoviridae family. The information summary presented here may be helpful in comparative deciphering of the molecular basis of the thermophages' biology, biotechnology and in analyzing the environmental aspects of the thermophages' effect on the thermophile community.

4.
Acta Biochim Pol ; 68(3): 393-398, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34432408

RESUMO

The time of COVID-19 pandemic focused the attention of scientist to recognise the complex medical symptoms of the disease, modes of infection and possible therapies. The organisms' response towards SARS-CoV-2 infection depends on many individual factors and the course of disease is described as unprecedented and complex. Numerous symptoms from the respiratory system, abnormalities in the gastrointestinal tract, stroke, liver damage and coagulopathy, among others, are accompanied by negative side effects of the pandemic lifestyle, including immunity depletion, overall fitness impairment, skin condition worsening, psychological and psychiatric consequences. There is an urgent need to seek all possible routes for assuring favouring conditions to build and support the organisms' microbiological barriers and enhance immunity, which will also help during the ongoing vaccination action. Probiotic Lactic Acid Bacteria (LAB) and environmental Bacillus species are microorganisms typically found in food products or dietary supplements, but also applied on body surfaces or technological surfaces at home and in the industry. Since the contemporary definition of probiotics points to positive health effects, it is of highest importance to follow strict regulations and standards of product manufacturing, especially in the times of biohazard risks and rising public distrust of therapies. There is an urgent need to seek all possible routes for assuring the favouring conditions to build and support the organisms' microbiological barriers and enhance the immunity, that will serve also during the ongoing vaccination action. Probiotic LAB and environmental Bacillus species are microorganisms typically found in food products or dietary supplements, but also applied on body surface or technological surfaces in household and industry. Since the contemporary definition of probiotics points out the positive health effects, it is of highest importance to follow strict regulations and standards of product manufacturing, especially in the times of biohazard and rising public distrust of therapies.


Assuntos
COVID-19/imunologia , Probióticos/uso terapêutico , COVID-19/microbiologia , COVID-19/virologia , Suplementos Nutricionais , Trato Gastrointestinal/microbiologia , Humanos , SARS-CoV-2/isolamento & purificação
5.
MethodsX ; 7: 101070, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083239

RESUMO

De novo designed bioactive molecules, such as DNA, RNA and peptides, are utilized in increasingly diverse scientific, industrial and biomedical applications. Concatemerization of designed DNA, RNA and peptides may improve their stability, bioactivity and allow for gradual release of the bioactive molecule at the intended destination. In this context, we developed a new method enabling the formation of DNA concatemers for the production of artificial, repetitive genes, encoding concatemeric RNAs and proteins of any nucleotide and amino-acid sequence. The technology recruits the Type IIS SapI restriction endonuclease (REase) for assembling DNA fragments in an ordered head-to-tail-orientation. Alternatively, other commercially available SapI isoschizomers can be used: LguI and thermostable BspQI. Four series of DNA vectors dedicated to the expression of newly formed, concatemeric open reading frames (ORFs), were designed and constructed to meet the technology needs. • Vector-enzymatic DNA fragment amplification technology. • Construction of DNA concatemers many times longer than those available with the use of current de novo gene synthesis methods. • Biosynthesis of protein tandem repeats with programmable function never seen in nature.

6.
Data Brief ; 28: 105069, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31956674

RESUMO

Applications of bioactive peptides and polypeptides are emerging in areas such as drug development and drug delivery systems. These compounds are bioactive, biocompatible and represent a wide range of chemical properties, enabling further adjustments of obtained biomaterials. However, delivering large quantities of peptide derivatives is still challenging. Several methods have been developed for the production of concatemers - multiple copies of the desired protein segments. We have presented an efficient method for the production of peptides of desired length, expressed from concatemeric Open Reading Frame. The method employs specific amplification-expression DNA vectors. The main methodological approaches are described by Skowron et al., 2020 [1]. As an illustration of the demonstrated method's utility, an epitope from the S protein of Hepatitis B virus (HBV) was amplified. Additionally, peptides, showing potentially pro-regenerative properties, derived from the angiopoietin-related growth factor (AGF) were designed and amplified. Here we present a dataset including: (i) detailed protocols for the purification of HBV and AGF - derived polyepitopic protein concatemers, (ii) sequences of the designed primers, vectors and recombinant constructs, (iii) data on cytotoxicity, immunogenicity and stability of AGF-derived polypeptides.

7.
Mater Sci Eng C Mater Biol Appl ; 108: 110426, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923928

RESUMO

A DNA fragment amplification/expression technology for the production of new generation biomaterials for scientific, industrial and biomedical applications is described. The technology enables the formation of artificial Open Reading Frames (ORFs) encoding concatemeric RNAs and proteins. It recruits the Type IIS SapI restriction endonuclease (REase) for an assembling of DNA fragments in an ordered head-to-tail-orientation. The technology employs a vector-enzymatic system, dedicated to the expression of newly formed, concatemeric ORFs from strong promoters. Four vector series were constructed to suit specialised needs. As a proof of concept, a model amplification of a 7-amino acid (aa) epitope from the S protein of HBV virus was performed, resulting in 500 copies of the epitope-coding DNA segment, consecutively linked and expressed in Escherichia coli (E. coli). Furthermore, a peptide with potential pro-regenerative properties (derived from an angiopoietin-related growth factor) was designed. Its aa sequence was back-translated, codon usage optimized and synthesized as a continuous ORF 10-mer. The 10-mer was cloned into the amplification vector, enabling the N-terminal fusion and multiplication of the encoded protein with MalE signal sequence. The obtained genes were expressed, and the proteins were purified. Conclusively, we show that the proteins are neither cytotoxic nor immunogenic and they have a very low allergic potential.


Assuntos
Materiais Biocompatíveis , DNA Concatenado , Escherichia coli , Expressão Gênica , Técnicas de Amplificação de Ácido Nucleico , Fases de Leitura Aberta , DNA Concatenado/genética , DNA Concatenado/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus da Hepatite B/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Virais de Fusão/biossíntese , Proteínas Virais de Fusão/genética
8.
Acta Biochim Pol ; 66(2): 215-222, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31207608

RESUMO

The role of environmentally coexisting microflora that often comprises human commensal microbiome is still underestimated. Modern lifestyle changes include hygienic practices, food preparation and eradication of many contagious diseases. In this context, probiotic microorganisms are biocontrol remedies still under development, solving a number of gastrointestinal and immunological issues, while fighting hazardous microbiological biofilms on different surfaces. Probiotics are mainly associated with Lactic Acid Bacteria, however environmental, non-dairy sources are promising ecological niches of probiotic spore-forming Bacillus species. Industrial applications of these "unconventional" probiotics take an advantage of their sporulating activity which greatly enhances their compatibility with chemical formulations used in the household, cosmetic or pharmaceutical chemistry. We have analysed 14 commercially available chemical products, labelled or described to contain a probiotic or biologically active component. It was determined that in the most part they relay on consortiums of spore-forming, very closely related Bacillus species, exhibiting bimodal existence in the environment and the gastrointestinal tract (GIT). In addition, we have found a number of non-sporulating species. Overall, the microorganisms found included: Bacillus licheniformis, Bacillus subtilis, Bacillus pumilus, Citrobacter freundii, Klebsiella oxytoca, Stenotrophomonas malthophila, Serratia liquefaciens, Bacillus altitudinis, Lactobacillus gastricus, Bacillus megaterium, Lactobacillus nagelii, Aromatoleum buckelii, Trichosporon mucoides, Clostridium novyi, Bacteroides uniformis. As some of the listed species may become opportunistic pathogens, this raises an important question concerning general safety of probiotics, as apparently the manufacturing procedures do not always lead to microbiologically defined or sufficiently controlled microorganism consortiums.


Assuntos
Bacillus , Probióticos , Sabões/análise , Segurança Química , Qualidade de Produtos para o Consumidor , Microbioma Gastrointestinal , Humanos , Microbiologia Industrial , Espectrometria de Massas
9.
Appl Microbiol Biotechnol ; 103(8): 3439-3451, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30879089

RESUMO

Over 470 prototype Type II restriction endonucleases (REases) are currently known. Most recognise specific DNA sequences 4-8 bp long, with very few exceptions cleaving DNA more frequently. TsoI is a thermostable Type IIC enzyme that recognises the DNA sequence TARCCA (R = A or G) and cleaves downstream at N11/N9. The enzyme exhibits extensive top-strand nicking of the supercoiled single-site DNA substrate. The second DNA strand of such substrate is specifically cleaved only in the presence of duplex oligonucleotides containing a cognate site. We have previously shown that some Type IIC/IIG/IIS enzymes from the Thermus-family exhibit 'affinity star' activity, which can be induced by the S-adenosyl-L-methionine (SAM) cofactor analogue-sinefungin (SIN). Here, we define a novel type of inherently built-in 'star' activity, exemplified by TsoI. The TsoI 'star' activity cannot be described under the definition of the classic 'star' activity as it is independent of the reaction conditions used and cannot be separated from the cognate specificity. Therefore, we define this phenomenon as Secondary-Cognate-Specificity (SCS). The TsoI SCS comprises several degenerated variants of the cognate site. Although the efficiency of TsoI SCS cleavage is lower in comparison to the cognate TsoI recognition sequence, it can be stimulated by S-adenosyl-L-cysteine (SAC). We present a new route for the chemical synthesis of SAC. The TsoI/SAC REase may serve as a novel tool for DNA manipulation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Clivagem do DNA , Fragmentação do DNA , Dimetil Sulfóxido/química , Ativação Enzimática , Oligonucleotídeos/química , S-Adenosil-Homocisteína/análogos & derivados , S-Adenosil-Homocisteína/química , Especificidade por Substrato , Thermus/enzimologia
10.
Acta Biochim Pol ; 65(4): 509-519, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30521647

RESUMO

Supplementing the human microbiome with probiotic microorganisms is a proposed solution for civilization syndromes such as dysbiosis and gastrointestinal tract (GIT) disorders. Bimodal probiotic strains of the Bacillus genus constitute the microbiota of the human environment, and are typically found in soil, water, a number of non-dairy fermented foods, as well as in human and animal GIT. Probiotic Bacillus sp. are Gram positive rods, with the ability of sporulation to survive environmental stress and preparation conditions. In vitro models of the human stomach and human studies with probiotic Bacillus reveal the mechanisms of its life cycle and sporulation. The Bacillus sp. probiotic biofilm introduces biochemical effects such as antimicrobial and enzymatic activity, thus contributing to protection from GIT and other infections. Despite the beneficial activity of Bacillus strains belonging to the safety group 1, a number of strains can pose a substantial health risk, carrying genes for various toxins or antibiotic resistance. Commercially available Bacillus probiotic preparations include strains from the subtilis and other closely related phylogenetic clades. Those intended for oral administration in humans, often encapsulated with appropriate supporting materials, still tend to be mislabeled or poorly characterized. Bacillus sp. MALDI-TOF analysis, combined with sequencing of characteristic 16S rRNA or enzyme coding genes, may provide accurate identification. A promising future application of the probiotic Bacillus sp. might be the microflora biocontrol in the human body and the closest human environment. Environmental probiotic Bacillus species display the potential to support human microflora, however controversies regarding the safety of certain strains is a key factor in their still limited application.


Assuntos
Bacillus/fisiologia , Gastroenteropatias/microbiologia , Gastroenteropatias/prevenção & controle , Microbioma Gastrointestinal , Probióticos/administração & dosagem , Probióticos/efeitos adversos , Bacillus/classificação , Bacillus/genética , Biofilmes , Farmacorresistência Bacteriana , Humanos , Probióticos/normas , RNA Ribossômico 16S/genética , Risco
11.
Nucleic Acids Res ; 45(15): 9005-9018, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28911108

RESUMO

Two restriction-modification systems have been previously discovered in Thermus aquaticus YT-1. TaqI is a 263-amino acid (aa) Type IIP restriction enzyme that recognizes and cleaves within the symmetric sequence 5'-TCGA-3'. TaqII, in contrast, is a 1105-aa Type IIC restriction-and-modification enzyme, one of a family of Thermus homologs. TaqII was originally reported to recognize two different asymmetric sequences: 5'-GACCGA-3' and 5'-CACCCA-3'. We previously cloned the taqIIRM gene, purified the recombinant protein from Escherichia coli, and showed that TaqII recognizes the 5'-GACCGA-3' sequence only. Here, we report the discovery, isolation, and characterization of TaqIII, the third R-M system from T. aquaticus YT-1. TaqIII is a 1101-aa Type IIC/IIL enzyme and recognizes the 5'-CACCCA-3' sequence previously attributed to TaqII. The cleavage site is 11/9 nucleotides downstream of the A residue. The enzyme exhibits striking biochemical similarity to TaqII. The 93% identity between their aa sequences suggests that they have a common evolutionary origin. The genes are located on two separate plasmids, and are probably paralogs or pseudoparalogs. Putative positions and aa that specify DNA recognition were identified and recognition motifs for 6 uncharacterized Thermus-family enzymes were predicted.


Assuntos
Proteínas de Bactérias/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Motivos de Nucleotídeos , Plasmídeos/metabolismo , Thermus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Peso Molecular , Plasmídeos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Thermus/genética
12.
J Biosci ; 41(1): 27-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26949085

RESUMO

Screening of extreme environments in search for novel microorganisms may lead to the discovery of robust enzymes with either new substrate specificities or thermostable equivalents of those already found in mesophiles, better suited for biotechnology applications. Isolates from Iceland geysers' biofilms, exposed to a broad range of temperatures, from ambient to close to water boiling point, were analysed for the presence of DNA-interacting proteins, including restriction endonucleases (REases). GeoICI, a member of atypical Type IIS REases, is the most thermostable isoschizomer of the prototype BbvI, recognizing/cleaving 5'-GCAGC(N8/12)-3'DNA sequences. As opposed to the unstable prototype, which cleaves DNA at 30°C, GeoICI is highly active at elevated temperatures, up to 73°C and over a very wide salt concentration range. Recognition/cleavage sites were determined by: (i) digestion of plasmid and bacteriophage lambda DNA (Λ); (ii) cleavage of custom PCR substrates, (iii) run-off sequencing of GeoICI cleavage products and (iv) shotgun cloning and sequencing of Λ DNA fragmented with GeoICI. Geobacillus sp. genomic DNA was PCR-screened for the presence of other specialized REases-MTases and as a result, another putative REase- MTase, GeoICII, related to the Thermus sp. family of bifunctional REases-methyltransferases (MTases) was detected.


Assuntos
Enzimas de Restrição do DNA/química , Proteínas de Ligação a DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Geobacillus/enzimologia , Sequência de Aminoácidos/genética , Sequência de Bases/genética , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Estabilidade Enzimática , Especificidade por Substrato , Temperatura
13.
J Biotechnol ; 194: 19-26, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25481098

RESUMO

The Thermus sp. family of IIS/IIG/IIC enzymes includes the thermostable, bifunctional, fused restriction endonuclease (REase)-methyltransferases (MTase): TaqII, Tth111II/TthHB27I, TspGWI, TspDTI and TsoI. The enzymes are large proteins (approximately 120kDa), their enzymatic activities are affected by S-adenosylmethionine (SAM), they recognise similar asymmetric cognate sites and cleave at a distance of 11/9 nucleotides (nt). The enzymes exhibit similarities of their amino acid (aa) sequences and DNA catalytic motifs. Thermus sp. enzymes are an example of functional aa sequence homologies among REases recognising different, yet related DNA sequences. The family consists of TspGWI- and TspDTI-subfamilies. TsoI appears to be a non-identical 'triplet', related to TspDTI and Tth111II/TthHB27I. The discovery of TsoI, purified from Thermus scotoductus, is described. This prototype, displaying a novel specificity, which was determined by: (i) cleavage of a reference plasmid and bacteriophage DNA, (ii) cleavage of custom PCR DNA substrates, (iii) run-off sequencing of cleavage products and (iv) shotgun cloning and sequencing of bacteriophage lambda (λ) DNA digested with TsoI. The enzyme recognises a degenerated 5'-TARCCA-3' sequence, whereas DNA strands are cut 11/9 nt downstream. The discovery of the TsoI prototype is of practical importance in biotechnology, as it extends the palette of cleavage specificities for gene cloning.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Metiltransferases/metabolismo , Thermus/enzimologia , DNA/metabolismo , Especificidade por Substrato
14.
J Biotechnol ; 194: 67-80, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25486633

RESUMO

The Thermus sp. family of bifunctional type IIS/IIG/IIC restriction endonucleases (REase)-methyltransferases (MTase) comprises thermo-stable TaqII, TspGWI, TspDTI, TsoI, Tth111II/TthHB27I enzymes as well as a number of putative enzymes/open reading frames (ORFs). All of the family members share properties including a large protein size (ca. 120kDa), amino acid (aa) sequence homologies, enzymatic activity modulation by S-adenosylmethionine (SAM), recognition of similar asymmetric cognate DNA sites and cleavage at a distance of 11/9 nt. Analysis of the enzyme aa sequences and domain/motif organisation led to further Thermus sp. family division into the TspDTI and TspGWI subfamilies. The latter exhibits an unprecedented phenomenon of DNA recognition change upon substitution of SAM by its analogue, sinefungin (SIN), towards a very frequent DNA cleavage. We report cloning in Escherichia coli (E. coli), using a two-stage procedure and a putative tthHB27IRM gene, detected by bioinformatics analysis of the Thermus thermophilus HB27 (T. thermophilus) genome. The functionality of a 3366 base pair (bp)-/1121 aa-long, high GC content ORF was validated experimentally through the expression in E. coli. Protein features corroborated with the reclassification of TthHB27I into the TspDTI subfamily, which manifested in terms of aa-sequence/motif homologies and insensitivity to SIN-induced specificity shift. However, both SAM and SIN stimulated the REase DNA cleavage activity by at least 16-32 times; the highest was observed for the Thermus sp. family. The availability of TthHB27I and the need to include SAM or SIN in the reaction in order to convert the enzyme from "hibernation" status to efficient DNA cleavage is of practical significance in molecular biotechnology, extending the palette of available REase specificities.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição do DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Thermus/enzimologia
15.
Microb Cell Fact ; 13: 7, 2014 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-24410856

RESUMO

BACKGROUND: An industrial approach to protein production demands maximization of cloned gene expression, balanced with the recombinant host's viability. Expression of toxic genes from thermophiles poses particular difficulties due to high GC content, mRNA secondary structures, rare codon usage and impairing the host's coding plasmid replication.TaqII belongs to a family of bifunctional enzymes, which are a fusion of the restriction endonuclease (REase) and methyltransferase (MTase) activities in a single polypeptide. The family contains thermostable REases with distinct specificities: TspGWI, TaqII, Tth111II/TthHB27I, TspDTI and TsoI and a few enzymes found in mesophiles. While not being isoschizomers, the enzymes exhibit amino acid (aa) sequence homologies, having molecular sizes of ~120 kDa share common modular architecture, resemble Type-I enzymes, cleave DNA 11/9 nt from the recognition sites, their activity is affected by S-adenosylmethionine (SAM). RESULTS: We describe the taqIIRM gene design, cloning and expression of the prototype TaqII. The enzyme amount in natural hosts is extremely low. To improve expression of the taqIIRM gene in Escherichia coli (E. coli), we designed and cloned a fully synthetic, low GC content, low mRNA secondary structure taqIIRM, codon-optimized gene under a bacteriophage lambda (λ) PR promoter. Codon usage based on a modified 'one amino acid-one codon' strategy, weighted towards low GC content codons, resulted in approximately 10-fold higher expression of the synthetic gene. 718 codons of total 1105 were changed, comprising 65% of the taqIIRM gene. The reason for we choose a less effective strategy rather than a resulting in high expression yields 'codon randomization' strategy, was intentional, sub-optimal TaqII in vivo production, in order to decrease the high 'toxicity' of the REase-MTase protein. CONCLUSIONS: Recombinant wt and synthetic taqIIRM gene were cloned and expressed in E. coli. The modified 'one amino acid-one codon' method tuned for thermophile-coded genes was applied to obtain overexpression of the 'toxic' taqIIRM gene. The method appears suited for industrial production of thermostable 'toxic' enzymes in E. coli. This novel variant of the method biased toward increasing a gene's AT content may provide economic benefits for industrial applications.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Thermus/enzimologia , Sequência de Aminoácidos , Composição de Bases , Sequência de Bases , Clonagem Molecular , Códon , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Escherichia coli/metabolismo , Dados de Sequência Molecular , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
16.
Mol Biol Rep ; 41(4): 2313-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24442320

RESUMO

We reported previously that TspGWI, a prototype enzyme of a new Thermus sp. family of restriction endonucleases-methyltransferases (REases-MTases), undergoes the novel phenomenon of sinefungin (SIN)-caused specificity transition. Here we investigated mutant TspGWI N473A, containing a single amino acid (aa) substitution in the NPPY motif of the MTase. Even though the aa substitution is located within the MTase polypeptide segment, DNA cleavage and modification are almost completely abolished, indicating that the REase and MTase are intertwined. Remarkably, the TspGWI N473A REase functionality can be completely reconstituted by the addition of SIN. We hypothesize that SIN binds specifically to the enzyme and restores the DNA cleavage-competent protein tertiary structure. This indicates the significant role of allosteric effectors in DNA cleavage in Thermus sp. enzymes. This is the first case of REase mutation suppression by an S-adenosylmethionine (SAM) cofactor analogue. Moreover, the TspGWI N473A clone strongly affects E. coli division control, acting as a 'selfish gene'. The mutant lacks the competing MTase activity and therefore might be useful for applications in DNA manipulation. Here we present a case study of a novel strategy for REase activity/specificity alteration by a single aa substitution, based on the bioinformatic analysis of active motif locations, combining (a) aa sequence engineering (b) the alteration of protein enzymatic properties, and (c) the use of cofactor-analogue cleavage reconstitution and stimulation.


Assuntos
Clivagem do DNA , Metilação de DNA , Enzimas de Restrição do DNA/metabolismo , Metiltransferases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Metiltransferases/química , Metiltransferases/genética , Especificidade por Substrato
17.
BMC Mol Biol ; 14: 17, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23919831

RESUMO

BACKGROUND: In continuing our research into the new family of bifunctional restriction endonucleases (REases), we describe the cloning of the tsoIRM gene. Currently, the family includes six thermostable enzymes: TaqII, Tth111II, TthHB27I, TspGWI, TspDTI, TsoI, isolated from various Thermus sp. and two thermolabile enzymes: RpaI and CchII, isolated from mesophilic bacteria Rhodopseudomonas palustris and Chlorobium chlorochromatii, respectively. The enzymes have several properties in common. They are large proteins (molecular size app. 120 kDa), coded by fused genes, with the REase and methyltransferase (MTase) in a single polypeptide, where both activities are affected by S-adenosylmethionine (SAM). They recognize similar asymmetric cognate sites and cleave at a distance of 11/9 nt from the recognition site. Thus far, we have cloned and characterised TaqII, Tth111II, TthHB27I, TspGWI and TspDTI. RESULTS: TsoI REase, which originate from thermophilic Thermus scotoductus RFL4 (T. scotoductus), was cloned in Escherichia coli (E. coli) using two rounds of biochemical selection of the T. scotoductus genomic library for the TsoI methylation phenotype. DNA sequencing of restriction-resistant clones revealed the common open reading frame (ORF) of 3348 bp, coding for a large polypeptide of 1116 aminoacid (aa) residues, which exhibited a high level of similarity to Tth111II (50% identity, 60% similarity). The ORF was PCR-amplified, subcloned into a pET21 derivative under the control of a T7 promoter and was subjected to the third round of biochemical selection in order to isolate error-free clones. Induction experiments resulted in synthesis of an app. 125 kDa protein, exhibiting TsoI-specific DNA cleavage. Also, the wild-type (wt) protein was purified and reaction optima were determined. CONCLUSIONS: Previously we identified and cloned the Thermus family RM genes using a specially developed method based on partial proteolysis of thermostable REases. In the case of TsoI the classic biochemical selection method was successful, probably because of the substantially lower optimal reaction temperature of TsoI (app. 10-15°C). That allowed for sufficient MTase activity in vivo in recombinant E. coli. Interestingly, TsoI originates from bacteria with a high optimum growth temperature of 67°C, which indicates that not all bacterial enzymes match an organism's thermophilic nature, and yet remain functional cell components. Besides basic research advances, the cloning and characterisation of the new prototype REase from the Thermus sp. family enzymes is also of practical importance in gene manipulation technology, as it extends the range of available DNA cleavage specificities.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Metiltransferases/química , Metiltransferases/genética , Thermus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Enzimas de Restrição do DNA/metabolismo , Estabilidade Enzimática , Metiltransferases/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta , Thermus/química , Thermus/genética
18.
BMC Biochem ; 12: 62, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22141927

RESUMO

BACKGROUND: The TaqII enzyme is a member of the Thermus sp. enzyme family that we propounded previously within Type IIS restriction endonucleases, containing related thermophilic bifunctional endonucleases-methyltransferases from various Thermus sp.: TaqII, Tth111II, TthHB27I, TspGWI, TspDTI and TsoI. These enzymes show significant nucleotide and amino acid sequence similarities, a rare phenomenon among restriction endonucleases, along with similarities in biochemical properties, molecular size, DNA recognition sequences and cleavage sites. They also feature some characteristics of Types I and III. RESULTS: Barker et al. reported the Type IIS/IIC restriction endonuclease TaqII as recognizing two distinct cognate site variants (5'-GACCGA-3' and 5'-CACCCA-3') while cleaving 11/9 nucleotides downstream. We used four independent methods, namely, shotgun cloning and sequencing, restriction pattern analysis, digestion of particular custom substrates and GeneScan analysis, to demonstrate that the recombinant enzyme recognizes only 5'-GACCGA-3' sites and cleaves 11/9 nucleotides downstream. We did not observe any 5'-CACCCA-3' cleavage under a variety of conditions and site arrangements tested. We also characterized the enzyme biochemically and established new digestion conditions optimal for practical enzyme applications. Finally, we developed and propose a new version of the Fidelity Index - the Fidelity Index for Partial Cleavage (FI-PC). CONCLUSIONS: The DNA recognition sequence of the bifunctional prototype TaqII endonuclease-methyltransferase from Thermus aquaticus has been redefined as recognizing only 5'-GACCGA-3' cognate sites. The reaction conditions (pH and salt concentrations) were designed either to minimize (pH = 8.0 and 10 mM ammonium sulphate) or to enhance star activity (pH = 6.0 and no salt). Redefinition of the recognition site and reaction conditions makes this prototype endonuclease a useful tool for DNA manipulation; as yet, this enzyme has no practical applications. The extension of the Fidelity Index will be helpful for DNA manipulation with enzymes only partially cleaving DNA.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Thermus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Catálise , DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade por Substrato , Thermus/química , Thermus/genética
19.
BMC Biochem ; 12: 47, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21864341

RESUMO

BACKGROUND: Restriction endonucleases are widely applied in recombinant DNA technology. Among them, enzymes of class IIS, which cleave DNA beyond recognition sites, are especially useful. We use BsaI enzyme for the pinpoint introduction of halogen nucleobases into DNA. This has been done for the purpose of anticancer radio- and phototherapy that is our long-term objective. RESULTS: An enzymatic method for synthesizing long double-stranded DNA labeled with the halogen derivatives of nucleobases (Hal-NBs) with 1-bp accuracy has been put forward and successfully tested on three different DNA fragments containing the 5-bromouracil (5-BrU) residue. The protocol assumes enzymatic cleavage of two Polymerase-Chain-Reaction (PCR) fragments containing two recognition sequences for the same or different class IIS restriction endonucleases, where each PCR fragment has a partially complementary cleavage site. These sites are introduced using synthetic DNA primers or are naturally present in the sequence used. The cleavage sites are not compatible, and therefore not susceptible to ligation until they are partially filled with a Hal-NB or original nucleobase, resulting in complementary cohesive end formation. Ligation of these fragments ultimately leads to the required Hal-NB-labeled DNA duplex. With this approach, a synthetic, extremely long DNA fragment can be obtained by means of a multiple assembly reaction (n × maximum PCR product length: n × app. 50 kb). CONCLUSIONS: The long, precisely labeled DNA duplexes obtained behave in very much the same manner as natural DNA and are beyond the range of chemical synthesis. Moreover, the conditions of synthesis closely resemble the natural ones, and all the artifacts accompanying the chemical synthesis of DNA are thus eliminated. The approach proposed seems to be completely general and could be used to label DNA at multiple pre-determined sites and with halogen derivatives of any nucleobase. Access to DNAs labeled with Hal-NBs at specific position is an indispensable condition for the understanding and optimization of DNA photo- and radio-degradation, which are prerequisites for clinical trials of Hal-NBs in anticancer therapy.


Assuntos
Enzimas de Restrição do DNA/metabolismo , DNA/biossíntese , DNA/genética , Halogênios/química , Pareamento de Bases , Sequência de Bases , Bromodesoxiuridina/metabolismo , DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Hibridização de Ácido Nucleico
20.
Biotechniques ; 50(6): 397-406, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21781040

RESUMO

The type IIS/IIC restriction endonuclease TspGWI recognizes the sequence 5'-ACGGA-3', cleaving DNA 11/9 nucleotides downstream. Here we show that sinefungin, a cofactor analog of S-adenosyl methionine, induces a unique type of relaxation in DNA recognition specificity. In the presence of sinefungin, TspGWI recognizes and cleaves at least 12 degenerate variants of the original recognition sequence that vary by single base pair changes from the original 5-bp restriction site with only a single degeneracy per variant appearing to be allowed. In addition, sinefungin was found to have a stimulatory effect on cleavage at these nondegenerate TspGWI recognition sites, irrespective of their number or the DNA topology. Interestingly, no fixed "core" could be identified among the new recognition sequences. Theoretically, TspGWI cleaves DNA every 1024 bp, while sinefungin-induced activity cleaves every 78.8 bp, corresponding to a putative 3-bp long recognition site. Thus, the combination of sinefungin and TspGWI represents a novel frequent cutter, next only to CviJI/CviJI*, that should prove useful in DNA cloning methodologies.


Assuntos
Adenosina/análogos & derivados , Proteínas de Bactérias/metabolismo , Enzimas de Restrição do DNA/metabolismo , DNA/metabolismo , Proteínas Recombinantes/metabolismo , Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , DNA/química , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Eletroforese em Gel de Ágar , Metiltransferases/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Thermus/enzimologia , Thermus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...