Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 138(Pt 9): 2537-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26169942

RESUMO

Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN(R212W) mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN(R212W) mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN(R212W) mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid neuropeptides in spinocerebellar ataxia, and suggests that restoring the elevated mutant neuropeptide levels can be explored as a therapeutic intervention.


Assuntos
Cerebelo/patologia , Dinorfinas/genética , Regulação da Expressão Gênica/genética , Transtornos dos Movimentos/etiologia , Mutação/genética , Células de Purkinje/fisiologia , Degenerações Espinocerebelares , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Contagem de Células , Células Cultivadas , Modelos Animais de Doenças , Dinorfinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Transdução de Sinais/genética , Degenerações Espinocerebelares/complicações , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia , Sinapses/genética , Sinapses/patologia
2.
J Neurochem ; 128(5): 741-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24134140

RESUMO

The protein kinase C γ (PKCγ) undergoes multistep activation and participates in various cellular processes in Purkinje cells. Perturbations in its phosphorylation state, conformation or localization can disrupt kinase signalling, such as in spinocerebellar ataxia type 14 (SCA14) that is caused by missense mutations in PRKCG encoding for PKCγ. We previously showed that SCA14 mutations enhance PKCγ membrane translocation upon stimulation owing to an altered protein conformation. As the faster translocation did not result in an increased function, we examined how SCA14 mutations induce this altered conformation of PKCγ and what the consequences of this conformational change are on PKCγ life cycle. Here, we show that SCA14-related PKCγ-V138E exhibits an exposed C-terminus as shown by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy in living cells, indicative of its partial unfolding. This conformational change was associated with faster phorbol 12-myristate 13-acetate-induced translocation and accumulation of fully phosphorylated PKCγ in the insoluble fraction, which could be rescued by coexpressing PDK1 kinase that normally triggers PKCγ autophosphorylation. We propose that the SCA14 mutation V138E causes unfolding of the C1B domain and exposure of the C-terminus of the PKCγ-V138E molecule, resulting in a decrease of functional kinase in the soluble fraction. Here, we show that the mutation V138E of the protein kinase C γ (PKCγ) C1B domain (PKCγ-V138E), which is implicated in spinocerebellar ataxia type 14, exhibits a partially unfolded C-terminus. This leads to unusually fast phorbol 12-myristate 13-acetate-induced membrane translocation and accumulation of phosphorylated PKCγ-V138E in the insoluble fraction, causing loss of the functional kinase. In contrast to general chaperones, coexpression of PKCγ's 'natural chaperone', PDK1 kinase, could rescue the PKCγ-V138E phenotype.


Assuntos
Proteína Quinase C/genética , Animais , Western Blotting , Células COS , Carcinógenos/farmacologia , Chlorocebus aethiops , DNA/genética , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Cinética , Mutação de Sentido Incorreto/genética , Mutação de Sentido Incorreto/fisiologia , Fosforilação , Polietilenoglicóis/química , Dobramento de Proteína , Proteína Quinase C/química , Proteínas Serina-Treonina Quinases/biossíntese , Piruvato Desidrogenase Quinase de Transferência de Acetil , Solubilidade , Solventes , Ataxias Espinocerebelares/genética , Acetato de Tetradecanoilforbol/farmacologia
3.
J Neurol ; 260(7): 1807-12, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23471613

RESUMO

We have recently identified missense mutations in prodynorphin (PDYN), the precursor to dynorphin opioid peptides, as the cause for spinocerebellar ataxia (SCA23) in Dutch ataxia cases. We report a screen of PDYN for mutations in 371 cerebellar ataxia cases, which had a positive family history; most are of French origin. Sequencing revealed three novel putative missense mutations and one heterozygous two-base pair deletion in four independent SCA patients. These variants were absent in 400 matched controls and are located in the highly conserved dynorphin domain. To resolve the pathogenicity of the heterozygous variants, we assessed the peptide production of the mutant PDYN proteins. Two missense mutations raised dynorphin peptide levels, the two-base pair deletion terminated dynorphin synthesis, and one missense mutation did not affect PDYN processing. Given the outcome of our functional analysis, we may have identified at least two novel PDYN mutations in a French and a Moroccan SCA patient. Our data corroborates recent work that also showed that PDYN mutations only account for a small percentage (~0.1 %) of European SCA cases.


Assuntos
Ataxia Cerebelar/genética , Encefalinas/genética , Precursores de Proteínas/genética , Adolescente , Adulto , Idade de Início , Feminino , Ligação Genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem
4.
Ann Neurol ; 72(6): 870-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23280838

RESUMO

OBJECTIVE: To identify the causative gene for the neurodegenerative disorder spinocerebellar ataxia type 19 (SCA19) located on chromosomal region 1p21-q21. METHODS: Exome sequencing was used to identify the causal mutation in a large SCA19 family. We then screened 230 ataxia families for mutations located in the same gene (KCND3, also known as Kv4.3) using high-resolution melting. SCA19 brain autopsy material was evaluated, and in vitro experiments using ectopic expression of wild-type and mutant Kv4.3 were used to study protein localization, stability, and channel activity by patch-clamping. RESULTS: We detected a T352P mutation in the third extracellular loop of the voltage-gated potassium channel KCND3 that cosegregated with the disease phenotype in our original family. We identified 2 more novel missense mutations in the channel pore (M373I) and the S6 transmembrane domain (S390N) in 2 other ataxia families. T352P cerebellar autopsy material showed severe Purkinje cell degeneration, with abnormal intracellular accumulation and reduced protein levels of Kv4.3 in their soma. Ectopic expression of all mutant proteins in HeLa cells revealed retention in the endoplasmic reticulum and enhanced protein instability, in contrast to wild-type Kv4.3 that was localized on the plasma membrane. The regulatory ß subunit Kv channel interacting protein 2 was able to rescue the membrane localization and the stability of 2 of the 3 mutant Kv4.3 complexes. However, this either did not restore the channel function of the membrane-located mutant Kv4.3 complexes or restored it only partially. INTERPRETATION: KCND3 mutations cause SCA19 by impaired protein maturation and/or reduced channel function.


Assuntos
Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Canais de Potássio Shal/genética , Degenerações Espinocerebelares/genética , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Cicloeximida/farmacologia , Análise Mutacional de DNA , Progressão da Doença , Saúde da Família , Feminino , Estudos de Associação Genética , Genótipo , Células HEK293/metabolismo , Células HeLa/patologia , Humanos , Proteínas Luminescentes/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Técnicas de Patch-Clamp , Inibidores da Síntese de Proteínas/farmacologia , Coloração pela Prata , Degenerações Espinocerebelares/patologia , Fatores de Tempo , Transfecção
5.
Am J Hum Genet ; 87(5): 593-603, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21035104

RESUMO

Spinocerebellar ataxias (SCAs) are dominantly inherited neurodegenerative disorders characterized by progressive cerebellar ataxia and dysarthria. We have identified missense mutations in prodynorphin (PDYN) that cause SCA23 in four Dutch families displaying progressive gait and limb ataxia. PDYN is the precursor protein for the opioid neuropeptides, α-neoendorphin, and dynorphins A and B (Dyn A and B). Dynorphins regulate pain processing and modulate the rewarding effects of addictive substances. Three mutations were located in Dyn A, a peptide with both opioid activities and nonopioid neurodegenerative actions. Two of these mutations resulted in excessive generation of Dyn A in a cellular model system. In addition, two of the mutant Dyn A peptides induced toxicity above that of wild-type Dyn A in cultured striatal neurons. The fourth mutation was located in the nonopioid PDYN domain and was associated with altered expression of components of the opioid and glutamate system, as evident from analysis of SCA23 autopsy tissue. Thus, alterations in Dyn A activities and/or impairment of secretory pathways by mutant PDYN may lead to glutamate neurotoxicity, which underlies Purkinje cell degeneration and ataxia. PDYN mutations are identified in a small subset of ataxia families, indicating that SCA23 is an infrequent SCA type (∼0.5%) in the Netherlands and suggesting further genetic SCA heterogeneity.


Assuntos
Encefalinas/genética , Mutação de Sentido Incorreto , Precursores de Proteínas/genética , Degenerações Espinocerebelares/genética , Cerebelo/química , Cerebelo/citologia , Dinorfinas/análise , Encefalinas/análise , Feminino , Proteínas de Transporte de Glutamato da Membrana Plasmática/análise , Humanos , Masculino , Linhagem , Precursores de Proteínas/análise , Células de Purkinje/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...