Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501670

RESUMO

There is a great need to develop biodegradable thermoplastics for a variety of applications in a wide range of temperatures. In this work, we prepare polymer blends from polylactic acid (PLA) and thermoplastic polyurethane (TPU) via a melting blend method at 200 °C and study the creep deformation of the PLA/TPU blends in a temperature range of 10 to 40 °C with the focus on transient and steady-state creep. The stress exponent for the power law description of the steady state creep of PLA/TPU blends decreases linearly with the increase of the mass fraction of TPU from 1.73 for the PLA to 1.17 for the TPU. The activation energies of the rate processes for the steady-state creep and transient creep decrease linearly with the increase of the mass fraction of TPU from 97.7 ± 3.9 kJ/mol and 59.4 ± 2.9 kJ/mol for the PLA to 26.3 ± 1.3 kJ/mol and 25.4 ± 1.7 kJ/mol for the TPU, respectively. These linearly decreasing trends can be attributed to the weak interaction between the PLA and the TPU. The creep deformation of the PLA/TPU blends consists of the contributions of individual PLA and TPU.

2.
J Sci Food Agric ; 101(3): 1111-1118, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32785954

RESUMO

BACKGROUND: Tea processing involves fermentation, withering, steaming or pan-firing, rolling, baking, and drying. Some of these steps are performed at a high temperatures. At such temperatures the creep of the tea leaves plays an important role in the quality of tea. In materials science, creep is the tendency of a tea leaf to move slowly or defom permanently under a constant load. There has been much research on the mechanical properties of the outmost cuticular layer of leaves but there are few reports addressing the mechanical properties of whole leaves. RESULTS: We cut tea leaf into specimen of dog-bone shape and measure the time-dependent creep deformation using a dynamic mechnical analyzer. Three different tea leaves grown in Taiwan were examined. The nonlinear Burgers model is proposed to describe the creep deformation of the tea leaves. CONCLUSIONS: The creep of the tea leaves consists of primary and steady states, and the creep deformation is accurately described by the Kelvin representation of the nonlinear Burgers model. The viscosities in the primary stages satisfied the Arrhenius equation, and the activation energies were determined. The stress exponents for the creep of the tea leaves were less than unity. The Maxwell representation of the Burgers model is mathematically equivalent to the Kelvin representation of the Burgers model and can also be used to explain the creep of tea leaves. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Folhas de Planta/química , Fenômenos Biomecânicos , Camellia sinensis/química , Produção Agrícola/métodos , Folhas de Planta/crescimento & desenvolvimento , Taiwan , Chá/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...