Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tuberculosis (Edinb) ; 149: 102569, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39357126

RESUMO

Mycobacterium tuberculosis is a deadly pathogen that claims millions of lives every year. Current research focuses on finding new anti-tuberculosis drugs that are safe and effective, with lesser side effects and toxicity. One important approach is to identify bio-enhancers that can improve the effectiveness of anti-tuberculosis drugs, resulting in reduced doses and shortened treatment times. The present study investigates the use of C-4 modified isotetrones as bio-enhancers. A series of studies suggest an isotetrone, labeled as C11, inhibits growth, improves MIC, MBC and enhances the killing of M. tuberculosis H37Rv strain when used in combination with the first line and injectable anti-TB drugs in a dose-dependent manner. The combination of C11 and rifampicin also reduces the generation of spontaneous mutants against rifampicin and reaches a mutation prevention concentration (MPC) with moderate rifampicin concentrations. The identified compounds are effective against the MDR strain of M. tuberculosis and non-cytotoxic in HepG2 cells. We find that C11 induces the generation of reactive oxygen species (ROS) inside macrophages and within bacteria, resulting in better efficacy.

2.
FEMS Microbiol Lett ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390679

RESUMO

One of the debilitating causes of high mortality in the case of tuberculosis and other bacterial infections is the resistance development against standard drugs. There are limited studies so far to describe how a bacterial second messenger molecule can directly participate in distinctive antibiotic tolerance characteristics of a cell in a mechanism-dependent manner. Here we show that intracellular cyclic di-AMP (c-di-AMP) concentration can modulate drug sensitivity of Mycobacterium smegmatis by interacting with an effector protein or interfering with the 5'-UTR regions in mRNA of the genes and thus causing transcriptional downregulation of important genes in the pathways. We studied four antibiotics with different mechanisms of action: rifampicin, ciprofloxacin, erythromycin, and tobramycin and subsequently found that the level of drug sensitivity of the bacteria is directly proportional to the c-di-AMP concentration inside the cell. Further, we unraveled the underlying molecular mechanisms to delineate the specific genes and pathways regulated by c-di-AMP and hence result in differential drug sensitivity in M. smegmatis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA