Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 547: 56-73, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38636897

RESUMO

Dopamine (DA) neurons of the substantia nigra (SN) and ventral tegmental area generally respond to aversive stimuli or the absence of expected rewards with transient inhibition of firing rates, which can be recapitulated with activation of the lateral habenula (LHb) and eliminated by lesioning the intermediating rostromedial tegmental nucleus (RMTg). However, a minority of DA neurons respond to aversive stimuli, such as foot shock, with a transient increase in firing rate, an outcome that rarely occurs with LHb stimulation. The degree to which individual neurons respond to these two stimulation modalities with the same response phenotype and the role of the RMTg is not known. Here, we record responses from single SN DA neurons to alternating activation of the LHb and foot shock in male rats. Lesions of the RMTg resulted in a shift away from inhibition to no response during both foot shock and LHb stimulation. Furthermore, lesions unmasked an excitatory response during LHb stimulation. The response correspondence within the same neuron between the two activation sources was no different from chance in sham controls, suggesting that external inputs rather than intrinsic DA neuronal properties are more important to response outcome. These findings contribute to a literature that shows a complex neurocircuitry underlies the regulation of DA activity and, by extension, behaviors related to learning, anhedonia, and cognition.


Assuntos
Neurônios Dopaminérgicos , Habenula , Substância Negra , Animais , Masculino , Habenula/fisiologia , Neurônios Dopaminérgicos/fisiologia , Substância Negra/fisiologia , Eletrochoque , Potenciais de Ação/fisiologia , Ratos , Estimulação Elétrica , Ratos Sprague-Dawley , Área Tegmentar Ventral/fisiologia
3.
Cells ; 12(14)2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37508477

RESUMO

Clinical and preclinical studies indicate that adaptations in corticostriatal neurotransmission significantly contribute to heroin relapse vulnerability. In animal models, heroin self-administration and extinction produce cellular adaptations in both neurons and astrocytes within the nucleus accumbens (NA) core that are required for cue-induced heroin seeking. Specifically, decreased glutamate clearance and reduced association of perisynaptic astrocytic processes with NAcore synapses allow glutamate release from prelimbic (PrL) cortical terminals to engage synaptic and structural plasticity in NAcore medium spiny neurons. Normalizing astrocyte glutamate homeostasis with drugs like the antioxidant N-acetylcysteine (NAC) prevents cue-induced heroin seeking. Surprisingly, little is known about heroin-induced alterations in astrocytes or pyramidal neurons projecting to the NAcore in the PrL cortex (PrL-NAcore). Here, we observe functional adaptations in the PrL cortical astrocyte following heroin self-administration (SA) and extinction as measured by the electrophysiologically evoked plasmalemmal glutamate transporter 1 (GLT-1)-dependent current. We likewise observed the increased complexity of the glial fibrillary acidic protein (GFAP) cytoskeletal arbor and increased association of the astrocytic plasma membrane with synaptic markers following heroin SA and extinction training in the PrL cortex. Repeated treatment with NAC during extinction reversed both the enhanced astrocytic complexity and synaptic association. In PrL-NAcore neurons, heroin SA and extinction decreased the apical tuft dendritic spine density and enlarged dendritic spine head diameter in male Sprague-Dawley rats. Repeated NAC treatment during extinction prevented decreases in spine density but not dendritic spine head expansion. Moreover, heroin SA and extinction increased the co-registry of the GluA1 subunit of AMPA receptors in both the dendrite shaft and spine heads of PrL-NAcore neurons. Interestingly, the accumulation of GluA1 immunoreactivity in spine heads was further potentiated by NAC treatment during extinction. Finally, we show that the NAC treatment and elimination of thrombospondin 2 (TSP-2) block cue-induced heroin relapse. Taken together, our data reveal circuit-level adaptations in cortical dendritic spine morphology potentially linked to heroin-induced alterations in astrocyte complexity and association at the synapses. Additionally, these data demonstrate that NAC reverses PrL cortical heroin SA-and-extinction-induced adaptations in both astrocytes and corticostriatal neurons.


Assuntos
Acetilcisteína , Heroína , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Heroína/farmacologia , Acetilcisteína/farmacologia , Astrócitos , Sinapses , Glutamatos , Recidiva
4.
Nat Biomed Eng ; 7(10): 1252-1269, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37106153

RESUMO

Fully implantable wireless systems for the recording and modulation of neural circuits that do not require physical tethers or batteries allow for studies that demand the use of unconstrained and freely behaving animals in isolation or in social groups. Moreover, feedback-control algorithms that can be executed within such devices without the need for remote computing eliminate virtual tethers and any associated latencies. Here we report a wireless and battery-less technology of this type, implanted subdermally along the back of freely moving small animals, for the autonomous recording of electroencephalograms, electromyograms and body temperature, and for closed-loop neuromodulation via optogenetics and pharmacology. The device incorporates a system-on-a-chip with Bluetooth Low Energy for data transmission and a compressed deep-learning module for autonomous operation, that offers neurorecording capabilities matching those of gold-standard wired systems. We also show the use of the implant in studies of sleep-wake regulation and for the programmable closed-loop pharmacological suppression of epileptic seizures via feedback from electroencephalography. The technology can support a broader range of applications in neuroscience and in biomedical research with small animals.

5.
Cell Rep ; 42(5): 112404, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37083325

RESUMO

Cocaine blocks dopamine reuptake, thereby producing rewarding effects that are widely studied. However, cocaine also blocks serotonin uptake, which we show drives, in rats, individually variable aversive effects that depend on serotonin 2C receptors (5-HT2CRs) in the rostromedial tegmental nucleus (RMTg), a major GABAergic afferent to midbrain dopamine neurons. 5-HT2CRs produce depolarizing effects in RMTg neurons that are particularly strong in some rats, leading to aversive effects that reduce acquisition of and relapse to cocaine seeking. In contrast, 5-HT2CR signaling is largely lost after cocaine exposure in other rats, leading to reduced aversive effects and increased cocaine seeking. These results suggest a serotonergic biological marker of cocaine-seeking vulnerability that can be targeted to modulate drug seeking.


Assuntos
Cocaína , Ratos , Animais , Ratos Sprague-Dawley , Cocaína/farmacologia , Serotonina/farmacologia , Tegmento Mesencefálico , Neurônios Dopaminérgicos/fisiologia , Serotoninérgicos/farmacologia , Área Tegmentar Ventral/fisiologia
6.
bioRxiv ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-38405989

RESUMO

Addiction is marked by aberrant decision-making and an inability to suppress inappropriate and often dangerous behaviors. We previously demonstrated that inactivation of the rostromedial tegmental nucleus (RMTg) in rats causes persistent food seeking despite impending aversive footshock, an effect strikingly similar to the punishment resistance observed in people with a history of protracted drug use [1]. Here, we extend these studies to demonstrate chemogenetic silencing of RMTg axonal projections to the ventral tegmental area (VTA) (RMTg→VTA pathway) causes rats to endure significantly more footshock to receive cocaine infusions. To further test whether activation of this circuit is sufficient to suppress reward seeking in the absence of an overtly aversive stimulus, we used temporally specific optogenetic stimulation of the RMTg→VTA pathway as a "punisher" in place of footshock following lever pressing for either food or cocaine reward. While optical stimulation of the RMTg→VTA pathway robustly suppressed lever pressing for food, we found that stimulation of this circuit had only modest effects on suppressing responding for cocaine infusions. Even though optical RMTg→VTA stimulation was not particularly effective at reducing ongoing cocaine use, this experience nevertheless had long-lasting consequences, as reinstatement of drug seeking in response to cocaine-associated cues was profoundly suppressed when tested nearly two weeks later. These results suggest the RMTg may serve as a useful target for producing enduring reductions in drug craving, particularly during periods of abstinence from drug use.

7.
Nat Commun ; 13(1): 6865, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369508

RESUMO

Suppression of dangerous or inappropriate reward-motivated behaviors is critical for survival, whereas therapeutic or recreational opioid use can unleash detrimental behavioral actions and addiction. Nevertheless, the neuronal systems that suppress maladaptive motivated behaviors remain unclear, and whether opioids disengage those systems is unknown. In a mouse model using two-photon calcium imaging in vivo, we identify paraventricular thalamostriatal neuronal ensembles that are inhibited upon sucrose self-administration and seeking, yet these neurons are tonically active when behavior is suppressed by a fear-provoking predator odor, a pharmacological stressor, or inhibitory learning. Electrophysiological, optogenetic, and chemogenetic experiments reveal that thalamostriatal neurons innervate accumbal parvalbumin interneurons through synapses enriched with calcium permeable AMPA receptors, and activity within this circuit is necessary and sufficient for the suppression of sucrose seeking regardless of the behavioral suppressor administered. Furthermore, systemic or intra-accumbal opioid injections rapidly dysregulate thalamostriatal ensemble dynamics, weaken thalamostriatal synaptic innervation of downstream neurons, and unleash reward-seeking behaviors in a manner that is reversed by genetic deletion of thalamic µ-opioid receptors. Overall, our findings reveal a thalamostriatal to parvalbumin interneuron circuit that is both required for the suppression of reward seeking and rapidly disengaged by opioids.


Assuntos
Analgésicos Opioides , Parvalbuminas , Camundongos , Animais , Analgésicos Opioides/farmacologia , Cálcio , Recompensa , Sacarose
8.
Br J Pharmacol ; 179(11): 2589-2609, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35023154

RESUMO

BACKGROUND AND PURPOSE: 'Food addiction' is the subject of intense public and research interest. However, this nosology based on neurobehavioural similarities among obese individuals, patients with eating disorders and those with substance use disorders (drug addiction) remains controversial. We thus sought to determine which aspects of disordered eating are causally linked to preclinical models of drug addiction. We hypothesized that extensive drug histories, known to cause addiction-like brain changes and drug motivation in rats, would also cause addiction-like food motivation. EXPERIMENTAL APPROACH: Rats underwent extensive cocaine, alcohol, caffeine or obesogenic diet histories and were subsequently tested for punishment-resistant food self-administration or 'compulsive appetite', as a measure of addiction-like food motivation. KEY RESULTS: Extensive cocaine and alcohol (but not caffeine) histories caused compulsive appetite that persisted long after the last drug exposure. Extensive obesogenic diet histories also caused compulsive appetite, although neither cocaine nor alcohol histories caused excess calorie intake and bodyweight during abstinence. Hence, compulsive appetite and obesity appear to be dissociable, with the former sharing common mechanisms with preclinical drug addiction models. CONCLUSION AND IMPLICATIONS: Compulsive appetite, as seen in subsets of obese individuals and patients with binge-eating disorder and bulimia nervosa (eating disorders that do not necessarily result in obesity), appears to epitomize 'food addiction'. Because different drug and obesogenic diet histories caused compulsive appetite, overlapping dysregulations in the reward circuits, which control drug and food motivation independently of energy homeostasis, may offer common therapeutic targets for treating addictive behaviours across drug addiction, eating disorders and obesity.


Assuntos
Comportamento Aditivo , Cocaína , Dependência de Alimentos , Transtornos Relacionados ao Uso de Substâncias , Animais , Apetite , Comportamento Alimentar , Alimentos , Dependência de Alimentos/complicações , Humanos , Obesidade/etiologia , Preparações Farmacêuticas , Ratos
9.
Neuropharmacology ; 198: 108763, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34433088

RESUMO

Between 2005 and 2009, several research groups identified a strikingly dense inhibitory input to midbrain dopamine neurons arising from a previously uncharted region posterior to the ventral tegmental area (VTA). This region is now denoted as either the rostromedial tegmental nucleus (RMTg) or the "tail of the VTA" (tVTA), and is recognized to express distinct genetic markers, encode negative "prediction errors" (inverse to dopamine neurons), and play critical roles in behavioral inhibition and punishment learning. RMTg neurons are also influenced by many categories of abused drugs, and may drive some aversive responses to such drugs, particularly cocaine and alcohol. However, despite much progress, many important questions remain about RMTg molecular/genetic properties, diversity of projection targets, and applications to addiction, depression, and other neuropsychiatric disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.


Assuntos
Comportamento Animal/fisiologia , Comportamento/fisiologia , Dopamina/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Neurônios Dopaminérgicos/fisiologia , Humanos , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Tegmento Mesencefálico/efeitos dos fármacos , Área Tegmentar Ventral/fisiopatologia
10.
Mol Psychiatry ; 26(11): 6159-6169, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34349226

RESUMO

Antipsychotic-induced dopamine supersensitivity, or behavioral supersensitivity, is a problematic consequence of long-term antipsychotic treatment characterized by the emergence of motor abnormalities, refractory symptoms, and rebound psychosis. The underlying mechanisms are unclear and no approaches exist to prevent or reverse these unwanted effects of antipsychotic treatment. Here we demonstrate that behavioral supersensitivity stems from long-lasting pre, post and perisynaptic plasticity, including insertion of Ca2+-permeable AMPA receptors and loss of D2 receptor-dependent inhibitory postsynaptic currents (IPSCs) in D2 receptor-expressing medium spiny neurons (D2-MSNs) in the nucleus accumbens core (NAcore). The resulting hyperexcitability, prominent in a subpopulation of D2-MSNs (21%), caused locomotor sensitization to cocaine and was associated with behavioral endophenotypes of antipsychotic treatment resistance and substance use disorder, including disrupted extinction learning and augmented cue-induced cocaine-seeking behavior. Chemogenetic restoration of IPSCs in D2-MSNs in the NAcore was sufficient to prevent antipsychotic-induced supersensitivity, pointing to an entirely novel therapeutic direction for overcoming this condition.


Assuntos
Antipsicóticos , Cocaína , Antipsicóticos/farmacologia , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
11.
J Neurosci ; 41(21): 4620-4630, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33753546

RESUMO

Although cocaine is powerfully rewarding, not all individuals are equally prone to abusing this drug. We postulate that these differences arise in part because some individuals exhibit stronger aversive responses to cocaine that protect them from cocaine seeking. Indeed, using conditioned place preference (CPP) and a runway operant cocaine self-administration task, we demonstrate that avoidance responses to cocaine vary greatly between individual high cocaine-avoider and low cocaine-avoider rats. These behavioral differences correlated with cocaine-induced activation of the rostromedial tegmental nucleus (RMTg), measured using both in vivo firing and c-fos, whereas slice electrophysiological recordings from ventral tegmental area (VTA)-projecting RMTg neurons showed that relative to low avoiders, high avoiders exhibited greater intrinsic excitability, greater transmission via calcium-permeable AMPA receptors (CP-AMPARs), and higher presynaptic glutamate release. In behaving animals, blocking CP-AMPARs in the RMTg with NASPM reduced cocaine avoidance. Hence, cocaine addiction vulnerability may be linked to multiple coordinated synaptic differences in VTA-projecting RMTg neurons.SIGNIFICANCE STATEMENT Although cocaine is highly addictive, not all individuals exposed to cocaine progress to chronic use for reasons that remain unclear. We find that cocaine's aversive effects, although less widely studied than its rewarding effects, show more individual variability, are predictive of subsequent propensity to seek cocaine, and are driven by variations in RMTg in response to cocaine that arise from distinct alterations in intrinsic excitability and glutamate transmission onto VTA-projecting RMTg neurons.


Assuntos
Aprendizagem da Esquiva/fisiologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Comportamento de Procura de Droga/fisiologia , Tegmento Mesencefálico/fisiologia , Animais , Comportamento Animal/fisiologia , Cocaína/farmacologia , Individualidade , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tegmento Mesencefálico/efeitos dos fármacos
12.
Neuropsychopharmacology ; 46(8): 1399-1406, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33230269

RESUMO

The prelimbic (PL) region of prefrontal cortex has been implicated in both driving and suppressing cocaine seeking in animal models of addiction. We hypothesized that these opposing roles for PL may be supported by distinct efferent projections. While PL projections to nucleus accumbens core have been shown to be involved in driving reinstatement of cocaine seeking, PL projections to the rostromedial tegmental nucleus (RMTg) may instead suppress reinstatement of cocaine seeking, due to the role of RMTg in behavioral inhibition. Here, we used a functional disconnection approach to temporarily disrupt the PL-RMTg pathway during cue- or cocaine-induced reinstatement. Male Sprague Dawley rats self-administered cocaine during daily 2-h sessions for ≥10 days and then underwent extinction training. Reinstatement of extinguished cocaine seeking was elicited by cocaine-associated cues or cocaine prime. Prior to reinstatement, rats received microinjections of the GABA agonists baclofen/muscimol (1/0.1 mM) into unilateral PL and the AMPA receptor antagonist NBQX (1 mM) into contralateral or ipsilateral RMTg. Functional disconnection of PL-RMTg via contralateral inactivation markedly increased cue-induced reinstatement, but did not increase cocaine-induced reinstatement or drive reinstatement of extinguished cocaine seeking in the absence of cues or cocaine. Enhanced cue-induced reinstatement was also observed with ipsilateral inactivation of PL and RMTg, but not with unilateral inactivation of PL or RMTg alone, indicating that both ipsilateral and contralateral projections from PL to RMTg have an inhibitory influence on behavior. These data further support a suppressive role for PL in cocaine seeking by implicating PL efferent projections to RMTg in inhibiting cue-induced reinstatement.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Cocaína/farmacologia , Sinais (Psicologia) , Comportamento de Procura de Droga , Extinção Psicológica , Masculino , Núcleo Accumbens , Ratos , Ratos Sprague-Dawley , Autoadministração
13.
J Neurosci ; 41(2): 298-306, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33214316

RESUMO

The aversive properties associated with drugs of abuse influence both the development of addiction and relapse. Cocaine produces strong aversive effects after rewarding effects wear off, accompanied by increased firing in the lateral habenula (LHb) that contributes to downstream activation of the rostromedial tegmental nucleus (RMTg). However, the sources of this LHb activation are unknown, as the LHb receives many excitatory inputs whose contributions to cocaine aversion remain uncharacterized. Using cFos activation and in vivo electrophysiology in male rats, we demonstrated that the rostral entopeduncular nucleus (rEPN) was the most responsive region to cocaine among LHb afferents examined and that single cocaine infusions induced biphasic responses in rEPN neurons, with inhibition during cocaine's initial rewarding phase transitioning to excitation during cocaine's delayed aversive phase. Furthermore, rEPN lesions reduced cocaine-induced cFos activation by 2-fold in the LHb and by a smaller proportion in the RMTg, while inactivation of the rEPN or the rEPN-LHb pathway attenuated cocaine avoidance behaviors measured by an operant runway task and by conditioned place aversion (CPA). These data show an essential but not exclusive role of rEPN and its projections to the LHb in processing the aversive effects of cocaine, which could serve as a novel target for addiction vulnerability.SIGNIFICANCE STATEMENT Cocaine produces well-known rewarding effects but also strong aversive effects that influence addiction propensity, but whose mechanisms are poorly understood. We had previously reported that the lateral habenula (LHb) is activated by cocaine and contributes to cocaine's aversive effects, and the current findings show that the rostral entopeduncular nucleus (rEPN) is a major contributor to this LHb activation and to conditioned avoidance of cocaine. These findings show a critical, though not exclusive, rEPN role in cocaine's aversive effects, and shed light on the development of addiction.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/farmacologia , Núcleo Entopeduncular/efeitos dos fármacos , Habenula/efeitos dos fármacos , Animais , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Fenômenos Eletrofisiológicos , Núcleo Entopeduncular/fisiopatologia , Habenula/fisiopatologia , Masculino , Vias Neurais/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Recompensa , Área Tegmentar Ventral/fisiologia
14.
Nat Sci Sleep ; 12: 1215-1223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33380853

RESUMO

The rostromedial tegmental nucleus (RMTg), a brake of the dopamine system, is specifically activated by aversive stimuli, such as foot shock. It is principally composed of gamma-aminobutyric acid neurons. However, there is no exact location of the RMTg on the brain stereotaxic atlas. The RMTg can be defined by c-Fos staining elicited by psychostimulants, the position of retrograde-labeled neurons stained by injections into the ventral tegmental area (VTA), the terminal field formed by axons from the lateral habenula, and some molecular markers identified as specifically expressed in the RMTg such as FoxP1. The RMTg receives a broad range of inputs and produces diverse outputs, which indicates that the RMTg has multiple functions. First, the RMTg plays an essential role for non-rapid eye movement sleep. Additionally, the RMTg serves a vital role in response to addiction. Opiates increase the firing rates of dopaminergic neurons in the VTA by acting on µ-opioid receptors on RMTg neurons and their terminals inside the VTA. In this review, we summarize the recent research advances on the anatomical location of the RMTg in rats and mice, its projections, and its regulation of sleep-wake behavior and addiction.

15.
Cell Rep ; 33(6): 108362, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176134

RESUMO

Motivational states consist of cognitive, emotional, and physiological components controlled by multiple brain regions. An integral component of this neural circuitry is the bed nucleus of the stria terminalis (BNST). Here, we identify that neurons within BNST that express the gene prepronociceptin (PnocBNST) modulate rapid changes in physiological arousal that occur upon exposure to motivationally salient stimuli. Using in vivo two-photon calcium imaging, we find that PnocBNST neuronal responses directly correspond with rapid increases in pupillary size when mice are exposed to aversive and rewarding odors. Furthermore, optogenetic activation of these neurons increases pupillary size and anxiety-like behaviors but does not induce approach, avoidance, or locomotion. These findings suggest that excitatory responses in PnocBNST neurons encode rapid arousal responses that modulate anxiety states. Further histological, electrophysiological, and single-cell RNA sequencing data reveal that PnocBNST neurons are composed of genetically and anatomically identifiable subpopulations that may differentially tune rapid arousal responses to motivational stimuli.


Assuntos
Tonsila do Cerebelo/metabolismo , Comportamento Animal/fisiologia , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Receptores Opioides/metabolismo , Animais , Nível de Alerta , Masculino , Camundongos
16.
Neuron ; 105(5): 766-768, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32135088

RESUMO

In this issue of Neuron, Stephenson-Jones et al. (2020) dissect the function of the enigmatic ventral pallidum and elegantly demonstrate positive and negative valence encoding in its GABA and glutamate neurons that influence both approach and avoidance behavior via the lateral habenula.


Assuntos
Prosencéfalo Basal , Habenula , Ácido Glutâmico , Motivação , Neurônios
17.
Eur J Neurosci ; 51(3): 866-880, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31376295

RESUMO

Aversive, positive prediction error (+PE) provides a mechanism to update and increase future fear to uncertain threat predictors. The ventrolateral periaqueductal grey (vlPAG) has been offered as a neural locus for +PE computation. Yet, a causal demonstration of vlPAG +PE activity to update fear remains elusive. We devised a fear discrimination procedure in which a danger cue predicts shock deterministically and an uncertainty cue predicts shock probabilistically, requiring prediction errors to achieve an appropriate fear response. Recording vlPAG single-unit activity during fear discrimination in Long-Evans rats, we reveal activity related to shock is consistent with +PE and updates subsequent fear to uncertainty at the trial level. We further demonstrate that vlPAG inhibition during shock selectively decreases future fear to uncertainty, but not danger, and temporal emergence of this effect is consistent with single-unit activity. These findings provide causal evidence that vlPAG +PE is necessary for fear updating.


Assuntos
Neurônios , Substância Cinzenta Periaquedutal , Animais , Medo , Inibição Psicológica , Ratos , Ratos Long-Evans
18.
Neuron ; 104(5): 987-999.e4, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31627985

RESUMO

Persistence of reward seeking despite punishment or other negative consequences is a defining feature of mania and addiction, and numerous brain regions have been implicated in such punishment learning, but in disparate ways that are difficult to reconcile. We now show that the ability of an aversive punisher to inhibit reward seeking depends on coordinated activity of three distinct afferents to the rostromedial tegmental nucleus (RMTg) arising from cortex, brainstem, and habenula that drive triply dissociable RMTg responses to aversive cues, outcomes, and prediction errors, respectively. These three pathways drive correspondingly dissociable aspects of punishment learning. The RMTg in turn drives negative, but not positive, valence encoding patterns in the ventral tegmental area (VTA). Hence, punishment learning involves pathways and functions that are highly distinct, yet tightly coordinated.


Assuntos
Aprendizagem/fisiologia , Vias Neurais/fisiologia , Punição , Recompensa , Tegmento Mesencefálico/fisiologia , Animais , Masculino , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/fisiologia
19.
Elife ; 82019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31566567

RESUMO

The ventrolateral periaqueductal gray (vlPAG) is proposed to mediate fear responses to imminent danger. Previously we reported that vlPAG neurons showing short-latency increases in firing to a danger cue - the presumed neural substrate for fear output - signal threat probability in male rats (Wright et al., 2019). Here, we scrutinize the activity vlPAG neurons that decrease firing to danger. One cue-inhibited population flipped danger activity from early inhibition to late excitation: a poor neural substrate for fear output, but a better substrate for threat timing. A second population showed differential firing with greatest inhibition to danger, less to uncertainty and no inhibition to safety. The pattern of differential firing reflected the pattern of fear output, and was observed throughout cue presentation. The results reveal an expected vlPAG signal for fear output in an unexpected, cue-inhibited population.


Assuntos
Sinais (Psicologia) , Medo , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Potenciais de Ação , Animais , Masculino , Ratos
20.
Cell ; 178(3): 653-671.e19, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348890

RESUMO

Nociceptin and its receptor are widely distributed throughout the brain in regions associated with reward behavior, yet how and when they act is unknown. Here, we dissected the role of a nociceptin peptide circuit in reward seeking. We generated a prepronociceptin (Pnoc)-Cre mouse line that revealed a unique subpopulation of paranigral ventral tegmental area (pnVTA) neurons enriched in prepronociceptin. Fiber photometry recordings during progressive ratio operant behavior revealed pnVTAPnoc neurons become most active when mice stop seeking natural rewards. Selective pnVTAPnoc neuron ablation, inhibition, and conditional VTA nociceptin receptor (NOPR) deletion increased operant responding, revealing that the pnVTAPnoc nucleus and VTA NOPR signaling are necessary for regulating reward motivation. Additionally, optogenetic and chemogenetic activation of this pnVTAPnoc nucleus caused avoidance and decreased motivation for rewards. These findings provide insight into neuromodulatory circuits that regulate motivated behaviors through identification of a previously unknown neuropeptide-containing pnVTA nucleus that limits motivation for rewards.


Assuntos
Motivação/efeitos dos fármacos , Peptídeos Opioides/farmacologia , Recompensa , Área Tegmentar Ventral/metabolismo , Potenciais de Ação , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Precursores de Proteínas/genética , Receptores Opioides/agonistas , Receptores Opioides/deficiência , Receptores Opioides/genética , Receptor de Nociceptina , Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...