Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837224

RESUMO

MicroRNA(miRNA) is a class of non-coding small RNA that plays an important role in plant growth, development, and response to environmental stresses. Unlike most miRNAs, which usually target homologous genes across a variety of species, miR827 targets different types of genes in different species. Research on miR827 mainly focuses on its role in regulating phosphate (Pi) homeostasis of plants, however, little is known about its function in plant response to virus infection. In the present study, miR827 was significantly upregulated in the recovery tissue of virus-infected Nicotiana tabacum. Overexpression of miR827 could improve plants resistance to the infection of chilli veinal mottle virus (ChiVMV) in Nicotiana benthamiana, whereas interference of miR827 increased the susceptibility of the virus-infected plants. Further experiments indicated that the antiviral defence regulated by miR827 was associated with the reactive oxygen species and salicylic acid signalling pathways. Then, fructose-1,6-bisphosphatase (FBPase) was identified to be a target of miR827, and virus infection could affect the expression of FBPase. Finally, transient expression of FBPase increased the susceptibility to ChiVMV-GFP infection in N. benthamiana. By contrast, silencing of FBPase increased plant resistance. Taken together, our results demonstrate that miR827 plays a positive role in tobacco response to virus infection, thus providing new insights into understanding the role of miR827 in plant-virus interaction.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , MicroRNAs , Nicotiana , Doenças das Plantas , Nicotiana/virologia , Nicotiana/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tobamovirus/fisiologia , Tobamovirus/genética , Plantas Geneticamente Modificadas
2.
Nat Commun ; 15(1): 3721, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698059

RESUMO

The enormous and widespread use of organoboronic acids has prompted the development of innovative synthetic methodologies to meet the demands on structural diversity and functional group tolerance. The existing photoinduced defunctionalization radical borylation, typically focused on the conversion of one C-X bond (X= Br, I, or other leaving group) into only one C-B bond. Herein, we disclose a divergent radical dechloroborylation reaction enabled by dinuclear gold catalysis with visible light irradiation. A wide range of structurally diverse alkyl boronic, α-chloroboronic, and gem-diboronic esters can be synthesized in moderate to good yields (up to 92%). Its synthetic robustness is further demonstrated on a preparative scale and applied to late-stage diversification of complex molecules. The process hinges on a C-Cl bond relay activation in readily available gem-dichloroalkanes through inner-sphere electron transfer, overcoming the redox potential limits of unreactive alkyl chlorides.

3.
Environ Sci Technol ; 58(21): 9314-9327, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38709515

RESUMO

Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.


Assuntos
Hormese , Medição de Risco , Poluentes Químicos da Água , Fluorocarbonos , Ácidos Alcanossulfônicos , Caprilatos
4.
Sci Total Environ ; 931: 172919, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703857

RESUMO

Species in estuaries tend to undergo both cadmium (Cd) and low salinity stress. However, how low salinity affects the Cd toxicity has not been fully understood. Investigating the impacts of low salinity on the dose-response relationships between Cd and biological endpoints has potential to enhance our understanding of the combined effects of low salinity and Cd. In this work, changes in the transcriptomes of Pacific oysters were analyzed following exposure to Cd (5, 20, 80 µg/L Cd2+) under normal (31.4 psu) and low (15.7 psu) salinity conditions, and then the dose-response relationship between Cd and transcriptome was characterized in a high-throughput manner. The benchmark dose (BMD) of gene expression, as a point of departure (POD), was also calculated based on the fitted dose-response model. We found that low salinity treatment significantly influenced the dose-response relationships between Cd and transcripts in oysters indicated by altered dose-response curves. In details, a total of 219 DEGs were commonly fitted to best models under both normal and low salinity conditions. Nearly three quarters of dose-response curves varied with salinity condition. Some monotonic dose-response curves in normal salinity condition even were replaced by nonmonotonic curves in low salinity condition. Low salinity treatment decreased the PODs of differentially expressed genes induced by Cd, suggesting that gene differential expression was more prone to being triggered by Cd in low salinity condition. The changed sensitivity to Cd in low salinity condition should be taken into consideration when using oyster as an indicator to assess the ecological risk of Cd pollution in estuaries.


Assuntos
Cádmio , Relação Dose-Resposta a Droga , Salinidade , Transcriptoma , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Transcriptoma/efeitos dos fármacos
5.
Sci Total Environ ; 929: 172662, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38649043

RESUMO

Tap water is a main route for human direct exposure to microplastics (MPs). This study recompiled baseline data from 34 countries to assess the current status and drivers of MP contamination in global tap water systems (TWS). It was shown that MPs were detected in 87 % of 1148 samples, suggesting the widespread occurrence of MPs in TWS. The detected concentrations of MPs spanned seven orders of magnitude and followed the linearized log-normal distribution (MSE = 0.035, R2 = 0.965), with cumulative concentrations at 5th, 50th and 95th percentiles of 0.028, 4.491 and 728.105 items/L, respectively. The morphological characteristics were further investigated, indicating that particles smaller than 50 µm dominated in global TWS, with fragment, polyester and transparent as the most common shape, composition and color of MPs, respectively. Subsequently, the SHapley Additive exPlanations (SHAP) algorithm was implemented to quantify the importance of variables affecting the MP abundance in global TWS, showing that the lower particle size limit was the most important variables. Subgroup analysis revealed that the concentration of MPs counted at the size limit of 1 µm was >20 times higher than that above 1 µm. Ultimately, current knowledge gaps and future research needs were elucidated.


Assuntos
Água Potável , Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Água Potável/química
6.
Science ; 383(6685): 855-859, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386724

RESUMO

Scalable fabrication of all-perovskite tandem solar cells is challenging because the narrow-bandgap subcells made of mixed lead-tin (Pb-Sn) perovskite films suffer from nonuniform crystallization and inferior buried perovskite interfaces. We used a dopant from Good's list of biochemical buffers, aminoacetamide hydrochloride, to homogenize perovskite crystallization and used it to extend the processing window for blade-coating Pb-Sn perovskite films and to selectively passivate defects at the buried perovskite interface. The resulting all-perovskite tandem solar module exhibited a certified power conversion efficiency of 24.5% with an aperture area of 20.25 square centimeters.

7.
Mol Genet Genomics ; 299(1): 10, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376608

RESUMO

MiRNAs play an important role in regulating plant growth and immune response. Mosaic diseases are recognized as the most important plant diseases in the world, and mosaic symptoms are recovery tissues formed by plants against virus infection. However, the mechanism of the formation of mosaic symptoms remains elusive. In this study, two typical mosaic systems consisting of Nicotiana tabacum-cucumber mosaic virus (CMV) and N. tabacum-tobacco mosaic virus (TMV) were used to investigate the relevance of miRNAs to the appearance of mosaic symptoms. The results of miRNA-seq showed that there were significant differences in miRNA abundance between dark green tissues and chlorotic tissues in mosaic leaves caused by the infection of CMV or TMV. Compared with healthy tissues, miRNA expression was significantly increased in chlorotic tissues, but slightly increased in dark green tissues. Three miRNAs, namely miR1919, miR390a, and miR6157, were identified to be strongly up-regulated in chlorotic tissues of both mosaic systems. Results of overexpressing or silencing of the three miRNAs proved that they were related to chlorophyll synthesis, auxin response, and small GTPase-mediated immunity pathway, which were corresponding to the phenotype, physiological parameters and susceptibility of the chlorotic tissues in mosaic leaves. Besides, the newly identified novel-miRNA48, novel-miRNA96 and novel-miRNA103 may also be involved in this formation of mosaic symptoms. Taken together, our results demonstrated that miR1919, miR390a and miR6157 are involved in the formation of mosaic symptoms and plant antiviral responses, providing new insight into the role of miRNAs in the formation of recovery tissue and plant immunity.


Assuntos
Infecções por Citomegalovirus , MicroRNAs , Nicotiana/genética , Ácidos Indolacéticos , MicroRNAs/genética , Fenótipo
8.
Mar Pollut Bull ; 200: 116030, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266481

RESUMO

The ecological risks of trace metals (Cu, Zn, As, Cd, Pb, and Hg) and PAHs in seawater from three typical bays of the Bohai Sea (the Liaodong Bay, Bohai Bay, and Laizhou Bay) were comprehensively assessed by recompiling 637 sites. Results highlighted that scrutiny should be given to the ecological risks of Cu (3.80 µg/L) in the Bohai Bay and Hg (0.23 µg/L) in the Laizhou Bay. Conversely, the Liaodong Bay exhibited negligible ecological risks related to trace metals. The risks of ΣPAHs in the Liaodong Bay, Bohai Bay, and Laizhou Bay were moderate, with mean concentrations of 368.16 ng/L, 731.93 ng/L, and 187.58 ng/L, respectively. The source allocation of trace metals and PAHs required consideration of spatial variability and anthropogenic factors, which greatly affected the distribution and composition of these pollutants. The combined ecological risks in the Bohai Bay (6.80 %) and Laizhou Bay (5.43 %) deserved more attention.


Assuntos
Mercúrio , Hidrocarbonetos Policíclicos Aromáticos , Oligoelementos , Poluentes Químicos da Água , Baías , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Água do Mar , Medição de Risco , China
9.
Viruses ; 15(12)2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-38140565

RESUMO

Autophagy, as a conserved protein degradation pathway in plants, has also been reported to be intricately associated with antiviral defense mechanisms. However, the relationship between chilli veinal mottle virus (ChiVMV) and autophagy has not been investigated in the existing research. Here, we reveal that ChiVMV infection caused the accumulation of autophagosomes in infected Nicotiana benthamiana leaves and the upregulation of autophagy-related genes (ATGs). Moreover, the changes in gene expression were correlated with the development of symptoms. Treatment with autophagy inhibitors (3-MA or E-64D) could increase the infection sites and facilitate virus infection, whereas treatment with the autophagy activator (Rapamycin) limited virus infection. Then, ATG8f was identified to interact with ChiVMV 6K2 protein directly in vitro and in vivo. The silencing of ATG8f promoted virus infection, whereas the overexpression of ATG8f inhibited virus infection. Furthermore, the expression of 6K2-GFP in ATG8f- or ATG7-silenced plants was significantly higher than that in control plants. Rapamycin treatment reduced the accumulation of 6K2-GFP in plant cells, whereas treatment with the inhibitor of the ubiquitin pathway (MG132), 3-MA, or E-64D displayed little impact on the accumulation of 6K2-GFP. Thus, our results demonstrated that ATG8f interacts with the ChiVMV 6K2 protein, promoting the degradation of 6K2 through the autophagy pathway.


Assuntos
Nicotiana , Viroses , Sirolimo , Autofagia , Doenças das Plantas
10.
Physiol Plant ; 175(5): e14012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882268

RESUMO

Catalases (CATs) play important roles in plant growth, development and defense responses. Previous studies have shown that CATs exhibit different or even opposite effects on plant immunity in different plant-pathogen interactions, but little is known about the mechanisms. In this study, Nicotiana tabacum plants with overexpression or knockout of CAT genes, tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) were employed to investigate the role of CAT in compatible plant-virus interactions. The results showed that there were dynamic changes in the effect of CAT on N. tabacum defense responses. Overexpression of catalase 1 (CAT1) and catalase 3 (CAT3) improved N. tabacum resistance in the early stage of virus infection but depressed it during the late stages of pathogenesis, especially in CAT3 overexpressing plants. The lower level of electrolyte leakage, lower contents of malonaldehyde and hydrogen peroxide (H2 O2 ), higher activities of antioxidant enzymes and improved functions of photosystem II corresponded to the milder symptoms and higher resistance of infected tobacco plants. In addition, the infection of TMV and CMV resulted in expression changes of CATs in tobacco plants, and pretreatment with H2 O2 facilitated TMV and CMV infection. Further experiments showed that the content of salicylic acid (SA) and the expression of genes related to SA signaling pathway were positively correlated with plant resistance, whereas auxin and its related signaling pathway were related to the viral susceptibility of plants. Taken together, our results demonstrated that CAT1 and CAT3 mediated tobacco resistance to virus infection through crosstalk between SA and auxin signaling pathways.


Assuntos
Infecções por Citomegalovirus , Viroses , Ácido Salicílico/metabolismo , Catalase/metabolismo , Nicotiana/metabolismo , Transdução de Sinais , Ácidos Indolacéticos/metabolismo , Doenças das Plantas
11.
Front Microbiol ; 14: 1251698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869663

RESUMO

Introduction: Tomato yellow leaf curl virus (TYLCV), which is a typical member of the genus Begomovirus, causes severe crop yield losses worldwide. RNA interference (RNAi) is an important antiviral defense mechanism in plants, but whether plant beneficial microbes used as biocontrol agents would modulate RNAi in defense against TYLCV remains unclear. Methods: Here, we employed whole-transcriptome, bisulfite, and small RNA sequencing to decipher the possible role of Bacillus amyloliquefaciens Ba13 as a bacterial biocontrol agent against TYLCV in RNAi modulation. Results: Potted tomato plants were exposed to whiteflies for natural viral infection 14 days after bacterial inoculation. Compared with non-inoculated controls, the abundance of TYLCV gene in the leaves of inoculated plants decreased by 70.1% at 28 days post-infection, which mirrored the pattern observed for plant disease index. The expression of the ARGONAUTE family genes (e.g., AGO3, AGO4, AGO5, and AGO7) involved in antiviral defense markedly increased by 2.44-6.73-fold following bacterial inoculation. The methylation level at CpG site 228 (in the open reading frame region of the RNA interference suppressing gene AV2) and site 461 (in the open reading frame regions of AV1 and AV2) was 183.1 and 63.0% higher in inoculated plants than in non-inoculated controls, respectively. The abundances of 10 small interfering RNAs matched to the TYLCV genome were all reduced in inoculated plants, accompanied by enhancement of photosystem and auxin response pathways. Discussion: The results indicate that the application of Ba. amyloliquefaciens Ba13 enhances plant resistance to TYLCV through RNAi modulation by upregulating RNAi-related gene expression and enhancing viral genome methylation.

12.
Aquat Toxicol ; 263: 106674, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666107

RESUMO

Increasing number of complex mixtures of organic pollutants in coastal area (especially for nanomaterials and micro/nanoplastics associated chemicals) threaten aquatic ecosystems and their joint hazards are complex and demanding tasks. Mussels are the most sensitive marine faunal groups in the world, and their early developmental stages (embryo and larvae) are particularly susceptible to environmental contaminants, which can distinguish the probable mechanisms of mixture-induced growth toxicity. In this study, the potential critical target and biological processes affected by graphene and triphenyl phosphate (TPP) were developed by mining public toxicogenomic data. And their combined toxic effects were verified by toxicological assay at early developmental stages in filter-feeding mussels (embryo and larvae). It showed that interactions among graphene/TPP with 111 genes (ABCB1, TP53, SOD, CAT, HSP, etc.) affected phenotypes along conceptual framework linking these chemicals to developmental abnormality endpoints. The PPAR signaling pathway, monocarboxylic acid metabolic process, regulation of lipid metabolic process, response to oxidative stress, and gonad development were noted as the key molecular pathways that contributed to the developmental abnormality. Enriched phenotype analysis revealed biological processes (cell proliferation, cell apoptosis, inflammatory response, response to oxidative stress, and lipid metabolism) affected by the investigated mixture. Combined, our results supported that adverse effects induced by contaminants/ mixture could not only be mediated by single receptor signaling or be predicted by the simple additive effect of contaminants. The results offer a framework for better comprehending the developmental toxicity of environmental contaminants in mussels and other invertebrate species, which have considerable potential for hazard assessment of coastal mixture.


Assuntos
Bivalves , Grafite , Poluentes Químicos da Água , Animais , Grafite/toxicidade , Ecossistema , Toxicogenética , Poluentes Químicos da Água/toxicidade
13.
Chem Soc Rev ; 52(17): 6120-6138, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37555398

RESUMO

In recent years, the activation of unactivated alkyl chlorides through light-induced processes has emerged as a promising field in radical chemistry, and has led to new transformations in organic synthesis. Direct utilization of alkyl chlorides as C(sp3)-hybridized electrophiles enables the facile construction of carbon-carbon and carbon-heteroatom bonds. Furthermore, recent studies in medicinal chemistry indicate that their presence is associated with high levels of success in clinical trials. This review summarizes the recent advances in the photoinduced activation of unactivated alkyl chlorides and discusses the mechanistic aspects underlying these reactions. We anticipate that this review will serve as a valuable resource for researchers in the field of unactivated chemical bond functionalization, and inspire considerable developments in organic chemistry, drug synthesis, materials science and other related disciplines.

14.
Chem Commun (Camb) ; 59(51): 7943-7946, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37278096

RESUMO

Dinuclear-gold-catalyzed radical difunctionalization of alkyl bromides with 1,7-enynes has been established via dehalogenation and 1,5-HAT processes. This protocol was used to construct, in a facile and efficient manner, a wide range of cyclopenta[c]quinolines bearing two quaternary carbon centers with good yields (28 examples, up to 84% yield). The good functional group compatibility and gram-scale preparation ability of the reaction proved its synthetic robustness.


Assuntos
Brometos , Ouro , Ciclização , Catálise , Carbono
15.
Artigo em Inglês | MEDLINE | ID: mdl-37137257

RESUMO

Cultivation of Larimichthys crocea in low salinity water has been regarded as an effective way to treat diseases induced by pathogens in seawater. The kidney of euryhaline teleost plays important roles in not only osmoregulation but also regulation of intermediary metabolism. However, the renal responses of metabolism and osmoregulation in L. crocea to low salinity waters are still rarely reported. In this work, renal metabolomic analysis based on MS technique was conducted on the L. crocea following cultivation in salinities of 24, 8, 6, 4, and 2 ppt for 40 days. A total of 485 metabolites covering organic acids and derivatives (34.17 %), lipids and lipid-like molecules (17.55 %), organoheterocyclic compounds (12.22 %), nucleosides, nucleotides, and analogues (11.91 %), and organic oxygen compounds (10.97 %), were identified in L. crocea kidney. Compared with control group (salinity 24), nearly all amino acids, nucleotides, and their derivatives were decreased in the kidney of L. crocea, whereas most of lipid-related metabolites including phospholipid, glycerophospholipids, and fatty acids were increased. The decrease in urea and inorganic ions as well as TMAO, betaine and taurine in L. crocea kidney suggested the less demand for maintaining osmotic homeostasis. Several intermediary metabolites covering amino acids, TCA cycle intermediates, and fatty acids were also significantly changed to match with the shift of energy allocation from osmoregulation to other biological processes. The reduced energy demand for osmoregulation might contribute to the promotion of L. crocea growth under low salinity environment. What is more, carbamoylphosphate and urea that showed linear salinity response curves and higher ED50 values were potential biomarkers to adaptation to low salinity water. Overall, the characterization of metabolomes of L. crocea kidney under low salinity provided a better understanding of the adaptive mechanisms to low salinity water and potentially contributed to a reference for optimal culture salinity and feed formula of L. crocea culture in low salinity water.


Assuntos
Perciformes , Salinidade , Animais , Perciformes/fisiologia , Nucleotídeos/metabolismo , Aminoácidos/metabolismo , Lipídeos , Água/metabolismo , Proteínas de Peixes/metabolismo
16.
Sci Total Environ ; 880: 163304, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030355

RESUMO

Antibiotics and nanoplastics (NPs) are among the two most concerned and studied marine emerging contaminants in recent years. Given the large number of different types of antibiotics and NPs, there is a need to apply efficient tools to evaluate their combined toxic effects. Using the thick-shelled mussel (Mytilus coruscus) as a marine ecotoxicological model, we applied a battery of fast enzymatic activity assays and 16S rRNA sequencing to investigate the biochemical and gut microbial response of mussels exposed to antibiotic norfloxacin (NOR) and NPs (80 nm polystyrene beads) alone and in combination at environmentally relevant concentrations. After 15 days of exposure, NPs alone significantly inhibited superoxide dismutase (SOD) and amylase (AMS) activities, while catalase (CAT) was affected by both NOR and NPs. The changes in lysozyme (LZM) and lipase (LPS) were increased over time during the treatments. Co-exposure to NPs and NOR significantly affected glutathione (GSH) and trypsin (Typ), which might be explained by the increased bioavailable NOR carried by NPs. The richness and diversity of the gut microbiota of mussels were both decreased by exposures to NOR and NPs, and the top functions of gut microbiota that were affected by the exposures were predicted. The data fast generated by enzymatic test and 16S sequencing allowed further variance and correlation analysis to understand the plausible driving factors and toxicity mechanisms. Despite the toxic effects of only one type of antibiotics and NPs being evaluated, the validated assays on mussels are readily applicable to other antibiotics, NPs, and their mixture.


Assuntos
Microbioma Gastrointestinal , Mytilus , Poluentes Químicos da Água , Animais , Microplásticos , Norfloxacino/toxicidade , Água do Mar , RNA Ribossômico 16S , Mytilus/fisiologia , Glutationa , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade
17.
Sci Total Environ ; 871: 162103, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764549

RESUMO

The wide application of TiO2-based engineered nanoparticles (nTiO2) inevitably led to release into aquatic ecosystems. Importantly, increasing studies have emphasized the high risks of nTiO2 to coastal environments. Bivalves, the representative benthic filter feeders in coastal zones, acted as important roles to assess and monitor the toxic effects of nanoparticles. Oxidative damage was one of the main toxic mechanisms of nTiO2 on bivalves, but the experimental variables/nanomaterial characteristics were diverse and the toxicity mechanism was complex. Therefore, it was very necessary to develop machine learning model to characterize and predict the potential toxicity. In this study, thirty-six machine learning models were built by nanodescriptors combined with six machine learning algorithms. Among them, random forest (RF) - catalase (CAT), k-neighbors classifier (KNN) - glutathione peroxidase (GPx), neural networks - multilayer perceptron (ANN) - glutathione s-transferase (GST), random forest (RF) - malondialdehyde (MDA), random forest (RF) - reactive oxygen species (ROS), and extreme gradient boosting decision tree (XGB) - superoxide dismutase (SOD) models performed good with high accuracy and balanced accuracy for both training sets and external validation sets. Furthermore, the best model revealed the predominant factors (exposure concentration, exposure periods, and exposure matrix) influencing the oxidative stress induced by nTiO2. These results showed that high exposure concentrations and short exposure-intervals tended to cause oxidative damage to bivalves. In addition, gills and digestive glands could be vulnerable to nTiO2-induced oxidative damage as tissues/organs differences were the important factors controlling MDA activity. This study provided insights into important nano-features responsible for the different indicators of oxidative stress and thereby extended the application of machine learning approaches in toxicological assessment for nanoparticles.


Assuntos
Bivalves , Nanopartículas , Animais , Ecossistema , Brânquias , Nanopartículas/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio , Bivalves/efeitos dos fármacos
18.
Environ Pollut ; 323: 121286, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791949

RESUMO

Cadmium (Cd) contamination in marine environment poses great risks to the organisms due to its potential adverse effects. In the present study, the toxicological effects and mechanisms of Cd at environmentally relevant concentrations (5 and 50 µg/L) on clam Ruditapes philippinarum after 21 days were investigated by combined ionomic, metabolomic, and transcriptomic analyses. Results showed that the uptake of Cd significantly decreased the concentrations of Cu, Zn, Sr, Se, and Mo in the whole soft tissue from 50 µg/L Cd-treated clams. Significantly negative correlations were observed between Cd and essential elements (Zn, Sr, Se, and Mo). Altered essential elements homeostasis was associated with the gene regulation of transport and detoxification, including ATP-binding cassette protein subfamily B member 1 (ABCB1) and metallothioneins (MT). The crucial contribution of Se to Cd detoxification was also found in clams. Additionally, gene set enrichment analysis showed that Cd could interfere with proteolysis by peptidases and decrease the translation efficiency at 50 µg/L. Cd inhibited lipid metabolism in clams and increased energy demand by up-regulating glycolysis and TCA cycle. Osmotic pressure was regulated by free amino acids, including alanine, glutamate, taurine, and homarine. Meanwhile, significant alterations of some differentially expressed genes, such as dopamine-ß-hydroxylase (DBH), neuroligin (NLGN), NOTCH 1, and chondroitin sulfate proteoglycan 1 (CSPG1) were observed in clams, which implied potential interference with synaptic transmission. Overall, through integrating multiple omics, this study provided new insights into the toxicological mechanisms of Cd, particularly in those mediated by dysregulation of essential element homeostasis.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Cádmio/análise , Poluentes Químicos da Água/análise , Transcriptoma , Alimentos Marinhos/análise
19.
Mar Environ Res ; 184: 105872, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621131

RESUMO

This study recompiled a national dataset to characterize the pollution level and health risk of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in oysters along the coastal areas of China. Results showed that the median concentrations of Cd, Cu, Pb and Zn in nationwide oysters were 5.5, 335, 1.3 and 1280 mg/kg dry weight, respectively. Generally, oysters from the north coasts presented lower metal pollution and higher quality than those from the south. The regional characteristics of trace metals in oysters might be contributed by the interspecific differences. Nationally, the noncarcinogenic risk posed by these four metals in oysters was relatively low, with the risk only occurring in a few hotspots such as the Pearl River Estuary and the Jiulong River Estuary. However, more attention should be paid to the carcinogenic risk of Cd, and priority should be given to formulating control measures to mitigate Cd pollution.


Assuntos
Metais Pesados , Ostreidae , Oligoelementos , Poluentes Químicos da Água , Humanos , Animais , Metais Pesados/análise , Cádmio , Bioacumulação , Chumbo , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental/métodos
20.
Sci Total Environ ; 862: 160724, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493811

RESUMO

The novel brominated flame retardant DBDPE has become a widespread environmental contaminant and could affect reproductive endocrine system in vertebrates. However, information about reproductive endocrine-disrupting effects of DBDPE on invertebrates is totally unknown. In this study, mussels Mytilus galloprovincialis were exposed to 1, 10, 50, 200 and 500 µg/L DBDPE for 30 days. Histopathological and transcriptomic analyses were performed to assess the reproductive endocrine-disrupting effects of DBDPE in mussels and the potential mechanisms. DBDPE promoted the gametogenesis in mussels of both sexes according to histological observation, gender-specific gene expression (VERL and VCL) and histological morphometric parameter analysis. Transcriptomic analysis demonstrated that DBDPE suppressed the genes related to cholesterol homeostasis and transport in both sexes via different LRPs- and ABCs-mediated pathways. DBDPE also disturbed nongenomic signaling pathway including signaling cascades (GPR157-IP3-Ca2+) in males and secondary messengers (cGMP) in females, and subsequently altered the expression levels of reproductive genes (VMO1, ZAN, Banf1 and Hook1). Additionally, dysregulation of energy metabolism in male mussels induced by DBDPE might interfere with the reproductive endocrine system. Overall, this is the first report that DBDPE evoked reproductive endocrine-disruptions in marine mussels. These findings will provide important references for ecological risk assessment of DBDPE pollution in marine environment.


Assuntos
Retardadores de Chama , Mytilus , Animais , Feminino , Masculino , Transcriptoma , Bromobenzenos/análise , Sistema Endócrino , Retardadores de Chama/toxicidade , Retardadores de Chama/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...