Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 743
Filtrar
1.
Sci Rep ; 14(1): 15246, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956068

RESUMO

This study aimed to explore the effects of peroxisome proliferator-activated receptor α (PPAR-α), a known inhibitor of ferroptosis, in Myocardial ischemia/reperfusion injury (MIRI) and its related mechanisms. In vivo and in vitro MIRI models were established. Our results showed that activation of PPAR-α decreased the size of the myocardial infarct, maintained cardiac function, and decreased the serum contents of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and Fe2+ in ischemia/reperfusion (I/R)-treated mice. Additionally, the results of H&E staining, DHE staining, TUNEL staining, and transmission electron microscopy demonstrated that activation of PPAR-α inhibited MIRI-induced heart tissue and mitochondrial damage. It was also found that activation of PPAR-α attenuated MIRI-induced ferroptosis as shown by a reduction in malondialdehyde, total iron, and reactive oxygen species (ROS). In vitro experiments showed that intracellular contents of malondialdehyde, total iron, LDH, reactive oxygen species (ROS), lipid ROS, oxidized glutathione disulphide (GSSG), and Fe2+ were reduced by the activation of PPAR-α in H9c2 cells treated with anoxia/reoxygenation (A/R), while the cell viability and GSH were increased after PPAR-α activation. Additionally, changes in protein levels of the ferroptosis marker further confirmed the beneficial effects of PPAR-α activation on MIRI-induced ferroptosis. Moreover, the results of immunofluorescence and dual-luciferase reporter assay revealed that PPAR-α achieved its activity via binding to the 14-3-3η promoter, promoting its expression level. Moreover, the cardioprotective effects of PPAR-α could be canceled by pAd/14-3-3η-shRNA or Compound C11 (14-3-3η inhibitor). In conclusion, our results indicated that ferroptosis plays a key role in aggravating MIRI, and PPAR-α/14-3-3η pathway-mediated ferroptosis and mitochondrial injury might be an effective therapeutic target against MIRI.


Assuntos
Proteínas 14-3-3 , Ferroptose , Traumatismo por Reperfusão Miocárdica , PPAR alfa , Ferroptose/efeitos dos fármacos , Animais , PPAR alfa/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas 14-3-3/metabolismo , Camundongos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Camundongos Endogâmicos C57BL , Ratos , Modelos Animais de Doenças
2.
Environ Pollut ; 358: 124535, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002748

RESUMO

The extensive utilization of pesticides results in their frequent detection in aquatic environments, often as complex mixtures, posing risks to aquatic organisms. The hook snout carp (Opsariichthys bidens) serves as a valuable bioindicator for evaluating the impacts of environmental pollutants in aquatic ecosystems. However, few studies examined the toxic effects of pesticides on O.bidens, let alone the characterization of the combined effects resulting from their mixtures. This study aims to elucidate the toxic effects of beta-cypermethrin and pyraclostrobin on O.bidens, individually and in combination, focusing on biochemical, transcriptional, and molecular responses. By organizing and analyzing the toxicogenomic databases, both pesticides were identified as a contributor to processes such as apoptosis, oxidative stress, and inflammatory responses. The acute toxicity test revealed comparable acute toxicity of beta-cypermethrin and pyraclostrobin on O.bidens, with LC50 being 0.019 and 0.027 mg/L, respectively, whereas the LC50 decreased to 0.0057 and 0.0079 mg/L under the combined exposure, indicating potential synergistic effects. The activities of enzymes involved in oxidative stress and detoxification were significantly altered after exposure, with superoxide dismutase (SOD) and catalase (CAT) increasing, while malondialdehyde (MDA) levels decreased. The activity of CYP450s was significantly changed. Likewise, the expression levels of genes (mn-sod, p53, esr, il-8) associated with oxidative stress, apoptosis, endocrine and immune systems were significantly increased. Combined exposure to the pesticides significantly exacerbated the aforementioned biological processes in O.bidens. Furthermore, both pesticides can modify protein activity by binding to the surface of SOD molecules and altering protein conformation, contributing to the elevated enzyme activity. Through the investigation of the synergistic toxic effects of pesticides and molecular mechanisms in O.bidens, our findings highlight the importance of assessing the combined effects of pesticide mixtures in aquatic environments.

3.
Biomed Pharmacother ; 176: 116850, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834006

RESUMO

Depression is a prevalent psychiatric disorder with accumulating evidence implicating dysregulation of extracellular adenosine triphosphate (ATP) levels in the medial prefrontal cortex (mPFC). It remains unclear whether facilitating endogenous ATP production and subsequently increasing extracellular ATP level in the mPFC can exert a prophylactic effect against chronic social defeat stress (CSDS)-induced depressive-like behaviors and enhance stress resilience. Here, we found that nicotinamide mononucleotide (NMN) treatment effectively elevated nicotinamide adenine dinucleotide (NAD+) biosynthesis and extracellular ATP levels in the mPFC. Moreover, both the 2-week intraperitoneal (i.p.) injection and 3-week oral gavage of NMN prior to exposure to CSDS effectively prevented the development of depressive-like behavior in mice. These protective effects were accompanied with the preservation of both NAD+ biosynthesis and extracellular ATP level in the mPFC. Furthermore, catalyzing ATP hydrolysis by mPFC injection of the ATPase apyrase negated the prophylactic effects of NMN on CSDS-induced depressive-like behaviors. Prophylactic NMN treatment also prevented the reduction in GABAergic inhibition and the increase in excitability in mPFC neurons projecting to the lateral habenula (LHb). Collectively, these findings demonstrate that the prophylactic effects of NMN on depressive-like behaviors are mediated by preventing extracellular ATP loss in the mPFC, which highlights the potential of NMN supplementation as a novel approach for protecting and preventing stress-induced depression in susceptible individuals.


Assuntos
Trifosfato de Adenosina , Comportamento Animal , Depressão , Camundongos Endogâmicos C57BL , Mononucleotídeo de Nicotinamida , Córtex Pré-Frontal , Estresse Psicológico , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Masculino , Trifosfato de Adenosina/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Depressão/tratamento farmacológico , Depressão/prevenção & controle , Depressão/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Camundongos , Comportamento Animal/efeitos dos fármacos , Derrota Social , NAD/metabolismo , Modelos Animais de Doenças
4.
Biosci Rep ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904095

RESUMO

Learning and memory impairment (LMI), a common degenerative central nervous system disease. Recently, more and more studies have shown that Ganoderma lucidum (GL) can improve the symptoms of LMI. The active ingredients in GL and their corresponding targets were screened through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) databases, and the potential LMI targets were searched for through GeneCard (GeneCards Human Gene Database) and DrugBank. Then, we construct a "main active ingredient-target" network and a protein-protein interaction (PPI) network diagram.The GO (Gene Ontology) functional enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotation analysis were performed on the common targets through DAVID (Database for Annotation Visualization and Integrated Discovery) to clarify the potential molecular mechanism of action of active ingredients in GL. The TNF protein was verified by western blot;Twenty one active ingredients in GL and 142 corresponding targets  were screened out, including 59 targets shared with LMI. The 448 biological processes shown by the GO functional annotation results and 55 signal pathways shown by KEGG enrichment analysis were related to the improvement of LMI by GL, among which the correlation of Alzheimer disease pathway is the highest, and TNF was the most important protein; TNF can improve LMI.GL can improve LMI mainly by 10 active ingredients in it, and they may play a role by regulating Alzheimer disease pathway and TNF protein.

5.
Nano Lett ; 24(25): 7637-7644, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874010

RESUMO

Revealing the effect of surface structure changes on the electrocatalytic performance is beneficial to the development of highly efficient catalysts. However, precise regulation of the catalyst surface at the atomic level remains challenging. Here, we present a continuous strain regulation of palladium (Pd) on gold (Au) via a mechanically controllable surface strain (MCSS) setup. It is found that the structural changes induced by the strain setup can accelerate electron transfer at the solid-liquid interface, thus achieving a significantly improved performance toward hydrogen evolution reaction (HER). In situ X-ray diffraction (XRD) experiments further confirm that the enhanced activity is attributed to the increased interplanar spacing resulting from the applied strain. Theoretical calculations reveal that the tensile strain modulates the electronic structure of the Pd active sites and facilitates the desorption of the hydrogen intermediates. This work provides an effective approach for revealing the relationships between the electrocatalyst surface structure and catalytic activity.

6.
Mil Med Res ; 11(1): 41, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937853

RESUMO

BACKGROUND: Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet ß cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS: db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS: In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS: PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.


Assuntos
Trifosfato de Adenosina , Conexinas , Gluconeogênese , Lipogênese , Fígado , Proteínas do Tecido Nervoso , Animais , Conexinas/metabolismo , Camundongos , Gluconeogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Trifosfato de Adenosina/metabolismo , Lipogênese/fisiologia , Fígado/metabolismo , Camundongos Knockout , Masculino , Humanos , Dieta Hiperlipídica/efeitos adversos , Citocinas
7.
BMC Geriatr ; 24(1): 506, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849763

RESUMO

AIM: This study was conducted in Urumqi, Xinjiang, to assess the prevalence of sarcopenia and to determine the relationship between physical activity, nutritional status, and sarcopenia among community-dwelling patients with type 2 diabetes mellitus. METHODS: Four hundred eight cases of older people patients with type 2 diabetes mellitus in the community in Urumqi, Xinjiang, from May to August 2022 were selected for a cross-sectional on-site survey, and general information questionnaires, clinical information surveys, physical function measurements, and criteria developed by the Asian sarcopenia working group in 2019 were selected for diagnosis of sarcopenia, and unifactorial and multifactorial binary Logistic regression were applied to analyze the influencing factors of T2DM combined with sarcopenia in patients with sarcopenia. RESULTS: Among the 408 patients, 84 (20.6%) had sarcopenia, with a prevalence of 12.6%, 32.1%, and 51.9% in those aged 60-70, 71- 80, and 81 or older respectively. The prevalence increased significantly with age. Adjusting for variables, the study found that FFM of the Left Leg (OR: 0.710, 95% CI: 0.612-0.804, P = 0.024), FFM of the Right Arm (OR: 0.710, 95% CI: 0.612-0.804, P < 0.001), Age (OR: 1.246, 95% CI: 1.031-1.505, P = 0.023), Fasting Blood Glucose (OR: 1.649, 95% CI: 1.066-2.550, P = 0.025), and Post-Prandial Blood Glucose (OR: 1.455, 95% CI: 0.999-2.118, P = 0.025) were independent associated factors. An increase in MNA score (OR: 0.398, 95% CI: 0.244-0.6500, P < 0.001), ASMI (OR: 0.000, 95% CI: 0.00-0.01, P < 0.001) walking energy expenditure (MET-min) (OR: 0.998, 95% CI: 0.996-0.999, P = 0.001) reduced the prevalence of sarcopenia. CONCLUSION: This study shows that increased age, increased skeletal muscle mass index, decreased right arm FFM, increased postprandial glucose, increased MNA scores, and increased walking energy expenditure (MET-min) were associated with type 2 diabetes with sarcopenia.


Assuntos
Diabetes Mellitus Tipo 2 , Exercício Físico , Vida Independente , Estado Nutricional , Sarcopenia , Humanos , Sarcopenia/epidemiologia , Sarcopenia/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Estudos Transversais , Masculino , Idoso , Feminino , Vida Independente/tendências , Pessoa de Meia-Idade , Estado Nutricional/fisiologia , Idoso de 80 Anos ou mais , Prevalência , Exercício Físico/fisiologia , China/epidemiologia
8.
Nat Prod Res ; : 1-7, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829303

RESUMO

A new lignan, 9'-O-angelyllariciresinol (1), and 20 known compounds (2-21) were isolated from the petroleum ether fraction of Laggera crispata (Vahl) Hepper & J. R. I. Wood. Their structures were identified by spectral analysis (NMR, IR, UV, and MS). Activity screening showed that compound 5 exhibited significant inhibitory effect on Staphylococcus aureus, while compound 2 exhibited significant inhibitory effect against liver cancer cell line HepG2.

9.
Clin Exp Med ; 24(1): 93, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693424

RESUMO

Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides. Despite their inability to code proteins, multiple studies have identified their important role in human cancer through different mechanisms. LncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1), a newly discovered lncRNA located on human chromosome 15q24.1, has recently been shown to be involved in the occurrence and progression of various malignancies, such as colorectal cancer, gastric cancer, hepatocellular carcinoma, prostate cancer, non-small cell lung cancer, ovarian cancer, cervical cancer, breast cancer, glioma, thymic carcinoma, pancreatic carcinoma. LOXL1-AS1 acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-374b-5p, miR-21, miR-423-5p, miR-589-5p, miR-28-5p, miR-324-3p, miR-708-5p, miR-143-3p, miR-18b-5p, miR-761, miR-525-5p, miR-541-3p, miR-let-7a-5p, miR-3128, miR-3614-5p, miR-377-3p and miR-1224-5p to promote tumor cell proliferation, invasion, migration, apoptosis, cell cycle, and epithelial-mesenchymal transformation (EMT). In addition, LOXL1-AS1 is involved in the regulation of P13K/AKT and MAPK signaling pathways. This article reviews the current understanding of the biological function and clinical significance of LOXL1-AS1 in human cancers. These findings suggest that LOXL1-AS1 may be both a reliable biomarker and a potential therapeutic target for cancers.


Assuntos
Biomarcadores Tumorais , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias/genética , Neoplasias/patologia , Biomarcadores Tumorais/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
10.
Viruses ; 16(5)2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793679

RESUMO

In recent years, an increasing number of viruses have triggered outbreaks that pose a severe threat to both human and animal life, as well as caused substantial economic losses. It is crucial to understand the genomic structure and epidemiology of these viruses to guide effective clinical prevention and treatment strategies. Nanopore sequencing, a third-generation sequencing technology, has been widely used in genomic research since 2014. This technology offers several advantages over traditional methods and next-generation sequencing (NGS), such as the ability to generate ultra-long reads, high efficiency, real-time monitoring and analysis, portability, and the ability to directly sequence RNA or DNA molecules. As a result, it exhibits excellent applicability and flexibility in virus research, including viral detection and surveillance, genome assembly, the discovery of new variants and novel viruses, and the identification of chemical modifications. In this paper, we provide a comprehensive review of the development, principles, advantages, and applications of nanopore sequencing technology in animal and human virus research, aiming to offer fresh perspectives for future studies in this field.


Assuntos
Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Vírus , Sequenciamento por Nanoporos/métodos , Animais , Humanos , Vírus/genética , Vírus/classificação , Vírus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Viroses/virologia , Viroses/diagnóstico , Genômica/métodos , Nanoporos
11.
Gynecol Endocrinol ; 40(1): 2360085, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38813955

RESUMO

Premature ovarian insufficiency (POI) is a common gynecological endocrine disease, which seriously affects women's physical and mental health and fertility, and its incidence is increasing year by year. With the development of social economy and technology, psychological stressors such as anxiety and depression caused by social, life and environmental factors may be one of the risk factors for POI. We used PubMed to search peer-reviewed original English manuscripts published over the last 10 years to identify established and experimental studies on the relationship between various types of stress and decreased ovarian function. Oxidative stress, follicular atresia, and excessive activation of oocytes, caused by Stress-associated factors may be the main causes of ovarian function damage. This article reviews the relationship between psychological stressors and hypoovarian function and the possible early intervention measures in order to provide new ideas for future clinical treatment and intervention.


Assuntos
Insuficiência Ovariana Primária , Estresse Psicológico , Humanos , Insuficiência Ovariana Primária/psicologia , Insuficiência Ovariana Primária/etiologia , Insuficiência Ovariana Primária/terapia , Feminino , Estresse Psicológico/complicações , Estresse Oxidativo/fisiologia , Fatores de Risco , Depressão/etiologia
12.
RSC Adv ; 14(15): 10703-10713, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38567337

RESUMO

Chlorpyrifos (CPF) is the most common pesticide entering the food chain and posing a threat to human health. This study presents a new electrochemical biosensor based on molybdenum disulfide nanosheets and nitrogen-doped carbon dot nanocomposite (MoS2@N-CDs) and kidney bean esterase (KdBE), and it is shown to achieve accurate detection of CPF. MoS2@N-CDs were prepared by a facile solvothermal method and characterized by electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrochemical characterization confirmed that MoS2@N-CDs facilitated electron transfer and increased the electroactive surface area of the electrode, thereby improved the sensing performance of the electrode. The oxidation peak current of 1-naphthol, which was produced by the hydrolysis of 1-naphthyl acetate catalyzed by KdBE, was adopted as the signal of the sensor. CPF can suppress KdBE activity and consequently cause a decrease in the sensing signal. The experimental results show that the variation of sensing signal is a reliable index to evaluate the CPF level. Under the optimized conditions, the developed enzyme sensor showed superior CPF assay performance with a linear detection range as wide as 0.01-500 µg L-1 and LOD as low as 3.5 × 10-3 µg L-1 (S/N = 3). The inter- and intra-batch RSDs for electrode testing were 4.02% and 2.69%, respectively. Moreover, the developed biosensor also showed good stability and anti-interference. The spiked recoveries of CPF in oilseed rape and cabbage ranged from 98.09% to 106.01% with low relative standard deviation (RSD) (<5.23%), suggesting that the sensor is a promising tool to enable simple, low-cost but highly sensitive large-scale screening of CPF residues in food.

13.
Exp Ther Med ; 27(5): 233, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38628660

RESUMO

The present study aimed to elucidate the role of autophagy-related genes (ARGs) in calcific aortic valve disease (CAVD) and their potential interactions with immune infiltration via experimental verification and bioinformatics analysis. A total of three microarray datasets (GSE12644, GSE51472 and GSE77287) were obtained from the Gene Expression Omnibus database, and gene set enrichment analysis was performed to identify the relationship between autophagy and CAVD. After differentially expressed genes and differentially expressed ARGs (DEARGs) were identified using CAVD samples and normal aortic valve samples, a functional analysis was performed, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, protein-protein interaction network construction, hub gene identification and validation, immune infiltration and drug prediction. The results of the present study indicated a significant relationship between autophagy and CAVD. A total of 46 DEARGs were identified. GO and pathway enrichment analyses revealed the complex roles of DEARGs in regulating CAVD, including multiple gene functions and pathways. A total of 10 hub genes were identified, with three (SPP1, CXCL12 and CXCR4) consistently upregulated in CAVD samples compared with normal aortic valve samples in multiple datasets and experimental validation. Immune infiltration analyses demonstrated significant differences in immune cell proportions between CAVD samples and normal aortic valve samples, thus showing the crucial role of immune infiltration in CAVD development. Furthermore, therapeutic drugs were predicted that could target the identified hub genes, including bisphenol A, resveratrol, progesterone and estradiol. In summary, the present study illuminated the crucial role of autophagy in CAVD development and identified key ARGs as potential therapeutic targets. In addition, the observed immune cell infiltration and predicted autophagy-related drugs suggest promising avenues for future research and novel CAVD treatments.

14.
Eur J Pharmacol ; 971: 176524, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561102

RESUMO

The present study aimed to explore how resveratrol (Res) confers myocardial protection by attenuating ferroptosis. In vivo and in vitro myocardial ischemia/reperfusion injury (MIRI) models were established, with or without Res pretreatment. The results showed that Res pretreatment effectively attenuated MIRI, as evidenced by increased cell viability, reduced lactate dehydrogenase activity, decreased infarct size, and maintained cardiac function. Moreover, Res pretreatment inhibited MIRI-induced ferroptosis, as shown by improved mitochondrial integrity, increased glutathione level, decreased prostaglandin-endoperoxide synthase 2 level, inhibited iron overload, and abnormal lipid peroxidation. Of note, Res pretreatment decreased or increased voltage-dependent anion channel 1/glutathione peroxidase 4 (VDAC1/GPX4) expression, which was increased or decreased via anoxia/reoxygenation (A/R) treatment, respectively. However, the overexpression of VDAC1 via pAd/VDAC1 and knockdown of GPX4 through Si-GPX4 reversed the protective effect of Res in A/R-induced H9c2 cells, whereas the inhibition of GPX4 with RSL3 abolished the protective effect of Res on mice treated with ischemia/reperfusion.Interestingly, knockdown of VDAC1 by Si-VDAC1 promoted the protective effect of Res on A/R-induced H9c2 cells and the regulation of GPX4. Finally, the direct interaction between VDAC1 and GPX4 was determined using co-immunoprecipitation. In conclusion, Res pretreatment could protect the myocardium against MIRI-induced ferroptosis via the VDAC1/GPX4 signaling pathway.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Miócitos Cardíacos , Resveratrol/farmacologia , Canal de Ânion 1 Dependente de Voltagem , Isquemia , Hipóxia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Reperfusão
15.
Environ Pollut ; 348: 123813, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537801

RESUMO

The removal of trace amounts of antibiotics from water environments while simultaneously avoiding potential environmental hazards during the treatment is still a challenge. In this work, green, harmless, and novel asymmetric mesoporous TiO2 (A-mTiO2) was combined with peroxodisulfate (PDS) as active components in a controlled-release material (CRM) system for the degradation of tetracycline (TC) in the dark. The formation of reactive oxygen species (ROS) and the degradation pathways of TC during catalytic PDS activation by A-mTiO2 powder catalysts and the CRMs were thoroughly studied. Due to its asymmetric mesoporous structure, there were abundant Ti3+/Ti4+ couples and oxygen vacancies in A-mTiO2, resulting in excellent activity in the activation of PDS for TC degradation, with a mineralization rate of 78.6%. In CRMs, ROS could first form during PDS activation by A-mTiO2 and subsequently dissolve from the CRMs to degrade TC in groundwater. Due to the excellent performance and good stability of A-mTiO2, the resulting constructed CRMs could effectively degrade TC in simulated groundwater over a long period (more than 20 days). From electron paramagnetic resonance analysis and TC degradation experiments, it was interesting to find that the ROS formed during PDS activation by A-mTiO2 powder catalysts and CRMs were different, but the degradation pathways for TC were indeed similar in the two systems. In PDS activation by A-mTiO2, besides the free hydroxyl radical (·OH), singlet oxygen (1O2) worked as a major ROS participating in TC degradation. For CRMs, the immobilization of A-mTiO2 inside CRMs made it difficult to capture superoxide radicals (·O2-), and continuously generate 1O2. In addition, the formation of sulfate radicals (·SO4-), and ·OH during the release process of CRMs was consistent with PDS activation by the A-mTiO2 powder catalyst. The eco-friendly CRMs had a promising potential for practical application in the remediation of organic pollutants from groundwater.


Assuntos
Antibacterianos , Tetraciclina , Espécies Reativas de Oxigênio , Preparações de Ação Retardada , Pós , Antibacterianos/química , Tetraciclina/química
16.
World J Gastrointest Oncol ; 16(2): 364-371, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425386

RESUMO

BACKGROUND: According to clinical data, a significant percentage of patients experience pain after surgery, highlighting the importance of alleviating postoperative pain. The current approach involves intravenous self-control analgesia, often utilizing opioid analgesics such as morphine, sufentanil, and fentanyl. Surgery for colorectal cancer typically involves general anesthesia. Therefore, optimizing anesthetic management and postoperative analgesic programs can effectively reduce perioperative stress and enhance postoperative recovery. The study aims to analyze the impact of different anesthesia modalities with multimodal analgesia on patients' postoperative pain. AIM: To explore the effects of different anesthesia methods coupled with multi-mode analgesia on postoperative pain in patients with colorectal cancer. METHODS: Following the inclusion criteria and exclusion criteria, a total of 126 patients with colorectal cancer admitted to our hospital from January 2020 to December 2022 were included, of which 63 received general anesthesia coupled with multi-mode labor pain and were set as the control group, and 63 received general anesthesia associated with epidural anesthesia coupled with multi-mode labor pain and were set as the research group. After data collection, the effects of postoperative analgesia, sedation, and recovery were compared. RESULTS: Compared to the control group, the research group had shorter recovery times for orientation, extubation, eye-opening, and spontaneous respiration (P < 0.05). The research group also showed lower Visual analog scale scores at 24 h and 48 h, higher Ramany scores at 6 h and 12 h, and improved cognitive function at 24 h, 48 h, and 72 h (P < 0.05). Additionally, interleukin-6 and interleukin-10 levels were significantly reduced at various time points in the research group compared to the control group (P < 0.05). Levels of CD3+, CD4+, and CD4+/CD8+ were also lower in the research group at multiple time points (P < 0.05). CONCLUSION: For patients with colorectal cancer, general anesthesia coupled with epidural anesthesia and multi-mode analgesia can achieve better postoperative analgesia and sedation effects, promote postoperative rehabilitation of patients, improve inflammatory stress and immune status, and have higher safety.

17.
Ecotoxicol Environ Saf ; 274: 116242, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513530

RESUMO

Oxadiazon (ODZ) is extensively utilized in agricultural fields for weed control owing to its strong effectiveness. However, excessive loading of ODZ in water bodies and agricultural soils can lead to various environmental concerns. Therefore, it is crucial to understand the ODZ metabolic process and associated mechanisms in crops to assess the likelihood of ODZ contamination in the environment. This study aimed to assess the effects of ODZ on the growth and toxicological responses of rice (Oryza sativa). The growth of rice tissues was notably compromised with the increase in ODZ concentrations. RNA sequencing in combination with liquid chromatography-quadrupole-time-of-flight-high-resolution mass spectrometry/mass spectrometry (LC-Q-TOF-HRMS/MS) analysis allowed for the identification of numerous transcriptional components associated with ODZ metabolism. Four libraries comprising rice roots and shoots exposed to ODZ were RNA-sequenced in triplicate. The application of environmentally realistic ODZ concentrations upregulated the expression of 844 genes in shoots and 1476 genes in roots. Gene enrichment analysis revealed the presence of multiple enzymes involved in ODZ metabolism and detoxification. These enzymes play a critical role in mitigating environmental stress and facilitating xenobiotic metabolism. Notably, among differentially expressed genes, several key enzymes were identified, including cytochrome P450s, protein kinases, aminotransferases, and ATP-binding cassette transporters involved in the metabolic process. Using LC-Q-TOF-HRMS/MS, 3 metabolites and 13 conjugates were identified in multiple metabolic pathways involving oxidation, hydrolysis, glycosylation, acetylation, and methylation. This study successfully established a potential link between the specific metabolic products of ODZ and increased activities of their corresponding enzymes. Moreover, this study considerably elucidates the detailed pathways and mechanisms involved in ODZ metabolism. The study findings provide valuable insights into the development of genotypes for reducing ODZ residues in paddy fields and minimizing their accumulation in rice crops.


Assuntos
Oryza , Oxidiazóis , Oryza/metabolismo , Espectrometria de Massas em Tandem , Agricultura , Cromatografia Líquida
18.
Acta Biomater ; 177: 316-331, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244661

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) aggregates called Lewy bodies leading to the gradual loss of dopaminergic (DA) neurons in the substantia nigra. Although α-syn expression can be attenuated by antisense oligonucleotides (ASOs) and heteroduplex oligonucleotide (HDO) by intracerebroventricular (ICV) injection, the challenge to peripheral targeted delivery of oligonucleotide safely and effectively into DA neurons remains unresolved. Here, we designed a new DNA/DNA double-stranded (complementary DNA, coDNA) molecule with cholesterol conjugation (Chol-HDO (coDNA)) based on an α-syn-ASO sequence and evaluated its silence efficiency. Further, Chol-HDO@LMNPs, Chol-HDO-loaded, cerebrovascular endothelial cell membrane with DSPE-PEG2000-levodopa modification (L-DOPA-CECm)-coated nanoparticles (NPs), were developed for the targeted treatment of PD by tail intravenous injection. CECm facilitated the blood-brain barrier (BBB) penetration of NPs, together with cholesterol escaped from reticuloendothelial system uptake, as well as L-DOPA was decarboxylated into dopamine which promoted the NPs toward the PD site for DA neuron regeneration. The behavioral tests demonstrated that the nanodecoys improved the efficacy of HDO on PD mice. These findings provide insights into the development of biomimetic nanodecoys loading HDO for precise therapy of PD. STATEMENT OF SIGNIFICANCE: The accumulation of α-synuclein (α-syn) aggregates is a hallmark of PD. Our previous study designed a specific antisense oligonucleotide (ASO) targeting human SNCA, but the traumatic intracerebroventricular (ICV) is not conducive to clinical application. Here, we further optimize the ASO by creating a DNA/DNA double-stranded molecule with cholesterol-conjugated, named Chol-HDO (coDNA), and develop a DA-targeted biomimetic nanodecoy Chol-HDO@LMNPs by engineering cerebrovascular endothelial cells membranes (CECm) with DSPE-PEG2000 and L-DOPA. The in vivo results demonstrated that tail vein injection of Chol-HDO@LMNPs could target DA neurons in the brain and ameliorate motor deficits in a PD mouse model. This investigation provides a promising peripheral delivery platform of L-DOPA-CECm nanodecoy loaded with a new Chol-HDO (coDNA) targeting DA neurons in PD therapy.


Assuntos
Doença de Parkinson , Camundongos , Humanos , Animais , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Levodopa , Oligonucleotídeos/farmacologia , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Biomimética , Células Endoteliais/metabolismo , DNA/metabolismo
19.
Hypertension ; 81(3): 582-594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38174565

RESUMO

BACKGROUND: Clinical evidence revealed abnormal prevalence of coronary artery (CA) disease in patients with pulmonary hypertension (PH). The mechanistic connection between PH and CA disease is unclear. Serotonin (5-hydroxytryptamine), reactive oxygen species, and Ca2+ signaling have been implicated in both PH and CA disease. Our recent study indicates that NOXs (NADPH [nicotinamide adenine dinucleotide phosphate] oxidases) and TRPM2 (transient receptor potential cation channel subfamily M member 2) are key components of their interplay. We hypothesize that activation of the NOX-TRPM2 pathway facilitates the remodeling of CA in PH. METHODS: Left and right CAs from chronic hypoxia and monocrotaline-induced PH rats were collected to study vascular reactivity, gene expression, metabolism, and mitochondrial function. Inhibitors or specific siRNA were used to examine the pathological functions of NOX1/4-TRPM2 in CA smooth muscle cells. RESULTS: Significant CA remodeling and 5-hydroxytryptamine hyperreactivity in the right CA were observed in PH rats. NOX1/4-mediated reactive oxygen species production coupled with TRPM2-mediated Ca2+ influx contributed to 5-hydroxytryptamine hyperresponsiveness. CA smooth muscle cells from chronic hypoxia-PH rats exhibited increased proliferation, migration, apoptosis, and metabolic reprogramming in an NOX1/4-TRPM2-dependent manner. Furthermore, the NOX1/4-TRPM2 pathway participated in mitochondrial dysfunction, involving mitochondrial DNA damage, reactive oxygen species production, elevated mitochondrial membrane potential, mitochondrial Ca2+ accumulation, and mitochondrial fission. In vivo knockdown of NOX1/4 alleviated PH and suppressed CA remodeling in chronic hypoxia rats. CONCLUSIONS: PH triggers an increase in 5-hydroxytryptamine reactivity in the right CA and provokes metabolic reprogramming and mitochondrial disruption in CA smooth muscle cells via NOX1/4-TRPM2 activation. This signaling pathway may play an important role in CA remodeling and CA disease in PH.


Assuntos
Hipertensão Pulmonar , Canais de Cátion TRPM , Humanos , Ratos , Animais , Hipertensão Pulmonar/metabolismo , Serotonina/farmacologia , Serotonina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vasos Coronários/patologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Reprogramação Metabólica , Transdução de Sinais , NADPH Oxidases/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 1/metabolismo
20.
Mol Plant ; 17(1): 4-7, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37990497

RESUMO

The current apomixis system used in fixing heterozygosity suffers from the problems of low fertility and limited apomixis induction rate. This study implies that egg-cell-specific expression of dandelion's PAR combined with MiMe in hybrid rice can efficiently trigger highly fertile synthetic apomixis for effective clonal propagation of hybrids.


Assuntos
Apomixia , Oryza , Oryza/genética , Apomixia/genética , Fertilidade/genética , Fenótipo , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...