Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475233

RESUMO

Among unmanned surface vehicle (USV) components, underwater thrusters are pivotal in their mission execution integrity. Yet, these thrusters directly interact with marine environments, making them perpetually susceptible to malfunctions. To diagnose thruster faults, a non-invasive and cost-effective vibration-based methodology that does not require altering existing systems is employed. However, the vibration data collected within the hull is influenced by propeller-fluid interactions, hull damping, and structural resonant frequencies, resulting in noise and unpredictability. Furthermore, to differentiate faults not only at fixed rotational speeds but also over the entire range of a thruster's rotational speeds, traditional frequency analysis based on the Fourier transform cannot be utilized. Hence, Continuous Wavelet Transform (CWT), known for attributions encapsulating physical characteristics in both time-frequency domain nuances, was applied to address these complications and transform vibration data into a scalogram. CWT results are diagnosed using a Vision Transformer (ViT) classifier known for its global context awareness in image processing. The effectiveness of this diagnosis approach was verified through experiments using a USV designed for field experiments. Seven cases with different fault types and severity were diagnosed and yielded average accuracy of 0.9855 and 0.9908 at different vibration points, respectively.

2.
Sensors (Basel) ; 20(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380718

RESUMO

In this paper, in order to overcome certain limitations of previously commercialized platforms, a new integrated unmanned surface vehicle (USV) and unmanned underwater vehicle (UUV) platform connected via underwater cable capable of acquiring real-time underwater data and long-time operation are studied. A catamaran-type USV was designed to overcome the limitations of an ocean environment and to play the role as the hub of power supply and communication for the integrated platform. Meanwhile, the UUV was designed as torpedo-shaped to minimize hydrodynamic resistance and its hardware design was focused on processing and sending the underwater camera and sonar data. The underwater cable driven by a winch system was installed to supply power from the USV to the UUV and to transmit acquired data form underwater sonar sensor or camera. Different from other previously studied cooperation system of USVs and autonomous underwater vehicles (AUVs), the merit of the proposed system is real-time motion coordination control between the USV and UUV while transmitting large amount of data using the tether cable. The main focus of the study is coordination of the UUV with respect to the global positioning system (GPS) attached at USV and verification of its performance throughout field tests. Waypoint tracking control algorithm was designed and implemented on USV and relative heading, distance control for USV-UUV coordination was implemented to UUV. To ensure the integrity of the coordination control of the integrated platform, a study on accurate measurement system of the relative position between the USV and the UUV by using the GPS and the ultrashort baseline (USBL) device was performed. Individual tests were conducted to verify the performance of USBL and AHRS, which provide the position and heading data of UUV among the sensors mounted on the actual platform, and the effectiveness of the obtained sensor data is presented. Using the accurate measurement system, a number of field tests were conducted to verify the performance of the integrated platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...