Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(15): 2963-2967, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529657

RESUMO

A type of modified nucleotide, deoxynucleotide γ-amidotriphosphates (dNTPγNH2s), exhibited around five times higher stability than dNTPs. These phosphamide nucleotides can be utilized by several DNA polymerases, and the amplification of a 10 kb DNA fragment through the polymerase chain reaction (PCR) can be accomplished even under conditions of high temperature, extended storage, or repeated freeze-thaw cycles. However, the control PCR with standard dNTPs was unsuccessful. These results indicate that dNTPγNH2s have the potential to substitute dNTPs in PCR.


Assuntos
DNA , Dimetoato , DNA Polimerase Dirigida por DNA , Nucleotídeos/genética
2.
Dalton Trans ; 53(11): 5020-5033, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294042

RESUMO

Due to the radioactivity of uranium, the discharged nuclear wastewater not only causes certain damage to the ecology, but also causes certain harm to human life and health. Adsorption is considered to be one of the most effective ways to remove uranium. In this paper, a kind of MoS2 adsorbent was prepared by the solid phase synthesis method and functionalized with NiCo-LDH. The raw materials of MoS2 are cheap and easy to obtain, and the preparation conditions are simple, and large quantities can be obtained without limitations. MoS2 functionalized with NiCo-LDH provides more adsorption sites for the adsorbent and at the same time improves the hydrophilicity of the adsorbent, so that the active sites can fully combine with uranyl ions. The maximum adsorption capacity of the Langmuir isothermal adsorption model is 492.83 mg g-1. The selective adsorption capacity of uranium can reach 76.12% in the multi-ion coexistence system. By analyzing the adsorption mechanism with FT-IR and XRD, it is believed that on the one hand, UO22+ forms a covalent bond with Mo in MoS2 and coordinates with S on the surface of MoS2. On the other hand, UO22+ enters the NiCo-LDH layer for ion exchange with NO3- and coordinates with -OH on the surface of NiCo-LDH. The successful preparation of the MoS2/NiCo-LDH composite provides a certain application prospect for the uranium adsorption field.

3.
Dalton Trans ; 52(29): 10136-10144, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37431306

RESUMO

The toxicity and radioactivity of uranium (U)-containing wastewater pose a serious threat to the environment of humans, animals, and plants. It is necessary to remove U from contaminated wastewater. With high adsorption capacity and fast adsorption rate, a composite CNT-P/HAP, which comprises carbon nanotubes (CNT) modified with polyethyleneimine (PEI), was functionalized further by hydroxyapatite (HAP) using the hydrothermal method. Adsorption experiments indicated that the optimal performance for CNT-P/HAP was 1330.64 mg g-1 of adsorption capacity and 40 min of adsorption equilibrium at a pH of 3. In addition, the adsorption capacity of CNT-P/HAP was over 2 times that of HAP at a pH of 7. The synergistic effect in both synthesis and adsorption gave CNT-P/HAP an excellent adsorption capacity for U. The XRD and FT-IR analysis indicated that the adsorption mechanism of CNT-P/HAP for U is decided by the pH of the solution. CNT-P/HAP could be used in multiple conditions to remediate U-containing wastewater.

4.
Adv Healthc Mater ; 12(25): e2300503, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37306493

RESUMO

Photodynamic therapy (PDT) uses photosensitizers to convert oxygen (O2 ) to reactive oxygen species (ROS) under irradiation to induce DNA damage and kill cancer cells. However, the effect of PDT is usually alleviated by apoptosis resistance mechanism of tumor living cells. MTH1 enzyme is known to be such an apoptosis-resistance enzyme which is over expressed as a scavenger to repair the damaged DNA. In this work, a hypoxia-activated nanosystem FTPA, which can be degraded to release the encapsulated PDT photosensitizer 4-DCF-MPYM and an inhibitor TH588 is proposed. The inhibitor TH588 can inhibit the DNA repair process by reducing the activity of MTH1 enzyme, and achieve the purpose of amplifying the therapeutic effect of PDT. This work demonstrates that a precise and augmented tumor PDT is achieved by integration of hypoxia-activation and inhibition resistance of tumor cells to apoptosis.


Assuntos
Fotoquimioterapia , Humanos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Oxigênio , Hipóxia/tratamento farmacológico , Apoptose
5.
ACS Chem Biol ; 17(8): 2074-2087, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35830623

RESUMO

Impaired DNA repair activity has been shown to greatly increase rates of cancer clinically. It has been hypothesized that upregulating repair activity in susceptible individuals may be a useful strategy for inhibiting tumorigenesis. Here, we report that selected tyrosine kinase (TK) inhibitors including nilotinib, employed clinically in the treatment of chronic myeloid leukemia, are activators of the repair enzyme Human MutT Homolog 1 (MTH1). MTH1 cleanses the oxidatively damaged cellular nucleotide pool by hydrolyzing the oxidized nucleotide 8-oxo-2'-deoxyguanosine (8-oxo-dG)TP, which is a highly mutagenic lesion when incorporated into DNA. Structural optimization of analogues of TK inhibitors resulted in compounds such as SU0448, which induces 1000 ± 100% activation of MTH1 at 10 µM and 410 ± 60% at 5 µM. The compounds are found to increase the activity of the endogenous enzyme, and at least one (SU0448) decreases levels of 8-oxo-dG in cellular DNA. The results suggest the possibility of using MTH1 activators to decrease the frequency of mutagenic nucleotides entering DNA, which may be a promising strategy to suppress tumorigenesis in individuals with elevated cancer risks.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Neoplasias , Monoéster Fosfórico Hidrolases/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Carcinogênese , DNA , Dano ao DNA , Humanos , Nucleotídeos , Estresse Oxidativo
6.
RSC Adv ; 11(23): 13839-13847, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35423942

RESUMO

Mg-Li based alloys have been widely used in various fields. However, the widespread use of Mg-Li based alloys were restricted by their poor properties. The addition of rare earth element in Mg-Li can significantly improve the properties of alloys. In the present work, different electrochemical methods were used to investigate the electrochemical behavior of Y(iii) on the W electrode in LiCl-KCl melts and LiCl-KCl-MgCl2 melts. In LiCl-KCl melts, typical cyclic voltammetry was used to study the electrochemical mechanism and thermodynamic parameters for the reduction of Y(iii) to metallic Y. In LiCl-KCl-MgCl2 melts, the formation mechanism of Mg-Y intermetallic compounds was investigated, and the results showed that only one kind of Mg-Y intermetallic compound was formed under our experimental conditions. Mg-Li-Y alloys were prepared via galvanostatic electrolysis, and XRD and SEM equipped with EDS analysis were used to analyze the samples. Because of the restrictions of EDS analysis, ICP-AES was used to analyze the Li content in Mg-Li-Y alloys. The microhardness and Young's modulus of the Mg-Li-Y alloys were then evaluated.

7.
RSC Adv ; 11(39): 24027-24031, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479041

RESUMO

Determination of aflatoxin B1 (AFB1) is still a big issue in food safety. In this paper, we developed a luminescence AFB1 detection method combined with ATP-releasing nucleotides (ARNs) and AFB1 aptamer. Firstly, using a new coupling method, we synthesized two ARNs (dTP4A and dGP4A) in a yield of 67% and 58%, respectively. The newly prepared ARNs show a much lower background. Then, we developed a new isothermal polymerase amplification method. In this method, two DNA hairpins were used to substitute the circle DNA template in rolling circle amplification. Using this amplification method and combined with AFB1 aptamer, a new AFB1 detection method is developed. A detection limit as low as 0.3 pM is achieved. This method is simple and efficient, and will have a great potential to be used for food safety and public health.

8.
Mol Cancer Ther ; 19(2): 432-446, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31744893

RESUMO

Investigations into the human 8-oxodGTPase, MutT Homolog 1 (MTH1), have risen sharply since the first-in-class MTH1 inhibitors were reported to be highly tumoricidal. However, MTH1 as a cancer therapeutic target is currently controversial because subsequently developed inhibitors did not exhibit similar cytotoxic effects. Here, we provide the first direct evidence for MTH1-independent 8-oxodGTPase function in human cancer cells and human tumors, using a novel ATP-releasing guanine-oxidized (ARGO) chemical probe. Our studies show that this functionally redundant 8-oxodGTPase activity is not decreased by five different published MTH1-targeting small molecules or by MTH1 depletion. Significantly, while only the two first-in-class inhibitors, TH588 and TH287, reduced cancer cell viability, all five inhibitors evaluated in our studies decreased 8-oxodGTPase activity to a similar extent. Thus, the reported efficacy of the first-in-class MTH1 inhibitors does not arise from their inhibition of MTH1-specific 8-oxodGTPase activity. Comparison of DNA strand breaks, genomic 8-oxoguanine incorporation, or alterations in cellular oxidative state by TH287 versus the noncytotoxic inhibitor, IACS-4759, contradict that the cytotoxicity of the former results solely from increased levels of oxidatively damaged genomic DNA. Thus, our findings indicate that mechanisms unrelated to oxidative stress or DNA damage likely underlie the reported efficacy of the first-in-class inhibitors. Our study suggests that MTH1 functional redundancy, existing to different extents in all cancer lines and human tumors evaluated in our study, is a thus far undefined factor which is likely to be critical in understanding the importance of MTH1 and its clinical targeting in cancer.


Assuntos
Antimutagênicos/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Neoplasias/genética , Monoéster Fosfórico Hidrolases/metabolismo , Linhagem Celular Tumoral , Humanos , Estudos Retrospectivos
9.
Nucleic Acids Res ; 47(18): 9495-9501, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31504784

RESUMO

We document the preparation and properties of dimerized pentaphosphate-bridged deoxynucleotides (dicaptides) that contain reactive components of two different nucleotides simultaneously. Importantly, dicaptides are found to be considerably more stable to hydrolysis than standard dNTPs. Steady-state kinetics studies show that the dimers exhibit reasonably good efficiency with the Klenow fragment of DNA polymerase I, and we identify thermostable enzymes that process them efficiently at high temperature. Experiments show that the dAp5dT dimer successfully acts as a combination of dATP and dTTP in primer extension reactions, and the dGp5dC dimer as a combination of dGTP and dCTP. The two dimers in combination promote successful 4-base primer extension. The final byproduct of the reaction, triphosphate, is shown to be less inhibitory to primer extension than pyrophosphate, the canonical byproduct. Finally, we document PCR amplification of DNA with two dimeric nucleotides, and show that the dimers can promote amplification under extended conditions when PCR with normal dNTPs fails. These dimeric nucleotides represent a novel and simple approach for increasing stability of nucleotides and avoiding inhibition from pyrophosphate.


Assuntos
DNA Polimerase I/genética , Replicação do DNA/genética , DNA/biossíntese , Nucleotídeos/genética , DNA/genética , Nucleotídeos de Desoxicitosina/genética , Nucleotídeos de Desoxiguanina/genética , Cinética , Temperatura
10.
DNA Repair (Amst) ; 83: 102644, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31311767

RESUMO

Cellular homeostasis is dependent on a balance between DNA damage and DNA repair mechanisms. Cells are constantly assaulted by both exogenous and endogenous stimuli leading to high levels of reactive oxygen species (ROS) that cause oxidation of the nucleotide dGTP to 8-oxodGTP. If this base is incorporated into DNA and goes unrepaired, it can result in G > T transversions, leading to genomic DNA damage. MutT Homolog 1 (MTH1) is a nucleoside diphosphate X (Nudix) pyrophosphatase that can remove 8-oxodGTP from the nucleotide pool before it is incorporated into DNA by hydrolyzing it into 8-oxodGMP. MTH1 expression has been shown to be elevated in many cancer cells and is thought to be a survival mechanism by which a cancer cell can stave off the effects of high ROS that can result in cell senescence or death. It has recently become a target of interest in cancer because it is thought that inhibiting MTH1 can increase genotoxic damage and cytotoxicity. Determining the role of MTH1 in normal and cancer cells is confounded by an inability to reliably and directly measure its native enzymatic activity. We have used the chimeric ATP-releasing guanine-oxidized (ARGO) probe that combines 8-oxodGTP and ATP to measure MTH1 enzymatic activity in colorectal cancer (CRC), non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) along with patient-matched normal tissue. MTH1 8-oxodGTPase activity is significantly increased in tumors across all three tissue types, indicating that MTH1 is a marker of cancer. MTH1 activity measured by ARGO assay was compared to mRNA and protein expression measured by RT-qPCR and Western blot in the CRC tissue pairs, revealing a positive correlation between ARGO assay and Western blot, but little correlation with RT-qPCR in these samples. The adoption of the ARGO assay will help in establishing the level of MTH1 activity in model systems and in assessing the effects of MTH1 modulation in the treatment of cancer.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Neoplasias/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Técnicas de Inativação de Genes , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Neoplasias/patologia , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética
11.
Chem Sci ; 10(11): 3264-3270, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30996911

RESUMO

The identification of single nucleotide polymorphisms (SNP) is increasingly important for diagnosis and treatment of disease. Here we studied the potential use of ATP-releasing nucleotides (ARNs) for identifying SNPs in DNA and RNA targets. Synthesized as derivatives of the four canonical deoxynucleotides, ARNs can be used in the place of deoxynucleoside triphosphates to elongate a primer hybridized to a nucleic acid template, with the leaving group being ATP rather than pyrophosphate. The released ATP is then harnessed in conjunction with luciferase to generate chemiluminescence. Extension on a long target DNA or RNA generates many equivalents of ATP per target strand, providing isothermal amplification of signal. In principle, allele-specific primers could be used in conjunction with ARNs to generate differential luminescence signals with respect to distinct genetic polymorphisms. To test this, varied primer designs, modifications, enzymes and conditions were tested, resulting in an optimized strategy that discriminates between differing nucleic acid templates with single nucleotide resolution. This strategy was then applied to diagnostically relevant alleles resulting in discrimination between known polymorphisms. SNP detection was successfully performed on transcribed mRNA fragments from four different alleles derived from JAK2, BCR-ABL1, BRAF, and HBB. To investigate background interference, wild-type and mutant transcripts of these four alleles were tested and found to be easily distinguishable amid total cellular RNA isolated from human blood. Thus, ARNs have been employed with specialized allele-specific primers to detect diagnostically important SNPs in a novel method that is sensitive, rapid, and isothermal.

12.
Bioconjug Chem ; 29(5): 1614-1621, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29578692

RESUMO

Nucleotide surveillance enzymes play important roles in human health, by monitoring damaged monomers in the nucleotide pool and deactivating them before they are incorporated into chromosomal DNA or disrupt nucleotide metabolism. In particular, deamination of cytosine, leading to uracil in DNA and in the nucleotide pool, can be deleterious, causing DNA damage. The enzyme deoxyuridine triphosphatase (dUTPase) is currently under study as a therapeutic and prognostic target for cancer. Measuring the activity of this enzyme is important both in basic research and in clinical applications involving this pathway, but current methods are nonselective, detecting pyrophosphate, which is produced by many enzymes. Here we describe the design and synthesis of a dUTPase enzyme-specific chimeric dinucleotide (DUAL) that replaces the pyrophosphate leaving group of the native substrate with ATP, enabling sensitive detection via luciferase luminescence signaling. The DUAL probe functions sensitively and selectively to quantify enzyme activities in vitro and in cell lysates. We further report the first measurements of dUTPase activities in eight different cell lines, which are found to vary by a factor of 7-fold. We expect that the new probe can be of considerable utility in research involving this clinically significant enzyme.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Substâncias Luminescentes/química , Nucleotídeos/química , Pirofosfatases/análise , Uridina Trifosfato/análogos & derivados , Linhagem Celular Tumoral , Ensaios Enzimáticos/métodos , Células HEK293 , Humanos , Medições Luminescentes/métodos , Especificidade por Substrato
13.
Nature ; 554(7692): 387-391, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29414941

RESUMO

DNA methylation by de novo DNA methyltransferases 3A (DNMT3A) and 3B (DNMT3B) at cytosines is essential for genome regulation and development. Dysregulation of this process is implicated in various diseases, notably cancer. However, the mechanisms underlying DNMT3 substrate recognition and enzymatic specificity remain elusive. Here we report a 2.65-ångström crystal structure of the DNMT3A-DNMT3L-DNA complex in which two DNMT3A monomers simultaneously attack two cytosine-phosphate-guanine (CpG) dinucleotides, with the target sites separated by 14 base pairs within the same DNA duplex. The DNMT3A-DNA interaction involves a target recognition domain, a catalytic loop, and DNMT3A homodimeric interface. Arg836 of the target recognition domain makes crucial contacts with CpG, ensuring DNMT3A enzymatic preference towards CpG sites in cells. Haematological cancer-associated somatic mutations of the substrate-binding residues decrease DNMT3A activity, induce CpG hypomethylation, and promote transformation of haematopoietic cells. Together, our study reveals the mechanistic basis for DNMT3A-mediated DNA methylation and establishes its aetiological link to human disease.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA/química , DNA/metabolismo , Sítios de Ligação , Proliferação de Células , Ilhas de CpG/genética , Cristalografia por Raios X , DNA/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Especificidade por Substrato
14.
J Am Chem Soc ; 140(6): 2105-2114, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29376367

RESUMO

The activity of DNA repair enzyme 8-oxoguanine DNA glycosylase (OGG1), which excises oxidized base 8-oxoguanine (8-OG) from DNA, is closely linked to mutagenesis, genotoxicity, cancer, and inflammation. To test the roles of OGG1-mediated repair in these pathways, we have undertaken the development of noncovalent small-molecule inhibitors of the enzyme. Screening of a PubChem-annotated library using a recently developed fluorogenic 8-OG excision assay resulted in multiple validated hit structures, including selected lead hit tetrahydroquinoline 1 (IC50 = 1.7 µM). Optimization of the tetrahydroquinoline scaffold over five regions of the structure ultimately yielded amidobiphenyl compound 41 (SU0268; IC50 = 0.059 µM). SU0268 was confirmed by surface plasmon resonance studies to bind the enzyme both in the absence and in the presence of DNA. The compound SU0268 was shown to be selective for inhibiting OGG1 over multiple repair enzymes, including other base excision repair enzymes, and displayed no toxicity in two human cell lines at 10 µM. Finally, experiments confirm the ability of SU0268 to inhibit OGG1 in HeLa cells, resulting in an increase in accumulation of 8-OG in DNA. The results suggest the compound SU0268 as a potentially useful tool in studies of the role of OGG1 in multiple disease-related pathways.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , DNA Glicosilases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Células CACO-2 , DNA Glicosilases/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Células HEK293 , Células HeLa , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo
15.
Nucleic Acids Res ; 45(20): 11515-11524, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29036687

RESUMO

Nucleotide quality surveillance enzymes play important roles in human health, by detecting damaged molecules in the nucleotide pool and deactivating them before they are incorporated into chromosomal DNA or adversely affect metabolism. In particular, deamination of adenine moiety in (deoxy)nucleoside triphosphates, resulting in formation of (d)ITP, can be deleterious, leading to DNA damage, mutagenesis and other harmful cellular effects. The 21.5 kDa human enzyme that mitigates this damage by conversion of (d)ITP to monophosphate, ITPA, has been proposed as a possible therapeutic and diagnostic target for multiple diseases. Measuring the activity of this enzyme is useful both in basic research and in clinical applications involving this pathway, but current methods are nonselective and are not applicable to measurement of the enzyme from cells or tissues. Here, we describe the design and synthesis of an ITPA-specific chimeric dinucleotide (DIAL) that replaces the pyrophosphate leaving group of the native substrate with adenosine triphosphate, enabling sensitive detection via luciferase luminescence signaling. The probe is shown to function sensitively and selectively to quantify enzyme activity in vitro, and can be used to measure the activity of ITPA in bacterial, yeast and human cell lysates.


Assuntos
Trifosfato de Adenosina/química , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/química , Inosina Monofosfato/análogos & derivados , Medições Luminescentes/métodos , Pirofosfatases/metabolismo , Extratos Celulares/química , Linhagem Celular Tumoral , DNA/genética , Dano ao DNA/genética , Desaminação , Células HeLa , Humanos , Inosina Monofosfato/química , Pirofosfatases/genética , Interferência de RNA , RNA Interferente Pequeno/genética
16.
Nucleic Acids Res ; 45(12): 7276-7284, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28531304

RESUMO

Metabolic activation of some N-nitroso compounds (NOCs), an important class of DNA damaging agents, can induce the carboxymethylation of nucleobases in DNA. Very little was previously known about how the carboxymethylated DNA lesions perturb DNA replication in human cells. Here, we investigated the effects of five carboxymethylated DNA lesions, i.e. O6-CMdG, N6-CMdA, N4-CMdC, N3-CMdT and O4-CMdT on the efficiency and fidelity of DNA replication in HEK293T human embryonic kidney cells. We found that, while neither N6-CMdA nor N4-CMdC blocked DNA replication or induced mutations, N3-CMdT, O4-CMdT and O6-CMdG moderately blocked DNA replication and induced substantial frequencies of T→A (81%), T→C (68%) and G→A (6.4%) mutations, respectively. In addition, our results revealed that CRISPR-Cas9-mediated depletion of Pol η resulted in significant drops in bypass efficiencies of N4-CMdC and N3-CMdT. Diminution in bypass efficiencies was also observed for N6-CMdA and O6-CMdG upon depletion of Pol κ, and for O6-CMdG upon removal of Pol ζ. Together, our study provided molecular-level insights into the impacts of the carboxymethylated DNA lesions on DNA replication in human cells, revealed the roles of individual translesion synthesis DNA polymerases in bypassing these lesions, and suggested the contributions of O6-CMdG, N3-CMdT and O4-CMdT to the mutations found in p53 gene of human gastrointestinal cancers.


Assuntos
Reparo do DNA , Replicação do DNA , DNA/genética , Desoxiadenosinas/metabolismo , Desoxicitidina/análogos & derivados , Timidina/análogos & derivados , Sequência de Bases , Sistemas CRISPR-Cas , DNA/metabolismo , Adutos de DNA/genética , Adutos de DNA/metabolismo , Dano ao DNA , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Desoxicitidina/metabolismo , Edição de Genes , Células HEK293 , Humanos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose , Timidina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
J Am Chem Soc ; 138(29): 9005-8, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27413803

RESUMO

The enzyme MTH1 cleanses the cellular nucleotide pool of oxidatively damaged 8-oxo-dGTP, preventing mutagenesis by this nucleotide. The enzyme is considered a promising therapeutic target; however, methods to measure its activity are indirect and laborious and have low sensitivity. Here we describe a novel ATP-linked chimeric nucleotide (ARGO) that enables luminescence signaling of the enzymatic reaction, greatly simplifying the measurement of MTH1 activity. We show that the reporting system can be used to identify inhibitors of MTH1, and we use it to quantify enzyme activity in eight cell lines and in colorectal tumor tissue. The ARGO reporter is likely to have considerable utility in the study of the biology of MTH1 and potentially in analyzing patient samples during clinical testing.


Assuntos
Trifosfato de Adenosina/metabolismo , Neoplasias Colorretais/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Medições Luminescentes/métodos , Terapia de Alvo Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Humanos
18.
Angew Chem Int Ed Engl ; 55(6): 2087-91, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26836342

RESUMO

A new strategy is reported for the production of luminescence signals from DNA synthesis through the use of chimeric nucleoside tetraphosphate dimers in which ATP, rather than pyrophosphate, is the leaving group. ATP-releasing nucleotides (ARNs) were synthesized as derivatives of the four canonical nucleotides. All four derivatives are good substrates for DNA polymerase, with Km values averaging 13-fold higher than those of natural dNTPs, and kcat values within 1.5-fold of those of native nucleotides. Importantly, ARNs were found to yield very little background signal with luciferase. DNA synthesis experiments show that the ATP byproduct can be harnessed to elicit a chemiluminescence signal in the presence of luciferase. When using a polymerase together with the chimeric nucleotides, target DNAs/RNAs trigger the release of stoichiometrically large quantities of ATP, thereby allowing sensitive isothermal luminescence detection of nucleic acids as diverse as phage DNAs and short miRNAs.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA/biossíntese , Luciferases/metabolismo , Nucleotídeos/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/química , DNA/química , Luciferases/química , Conformação de Ácido Nucleico , Nucleotídeos/química , RNA/química , RNA/metabolismo
19.
Sci Rep ; 4: 7052, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25394478

RESUMO

5-methylcytosine (5-mC) is a well-characterized epigenetic regulator in mammals. Recent studies showed that Ten-eleven translocation (Tet) proteins can catalyze the stepwise oxidation of 5-mC to produce 5-hydroxymethylcytosine (5-HmC), 5-formylcytosine (5-FoC) and 5-carboxylcytosine (5-CaC). The exciting discovery of these novel cytosine modifications has stimulated substantial research interests about their roles in epigenetic regulation. Here we systematically examined the effects of the oxidized 5-mC derivatives on the efficiency and fidelity of DNA transcription using a recently developed competitive transcription and adduct bypass assay. Our results showed that, when located on the transcribed strand, 5-FoC and 5-CaC exhibited marginal mutagenic and modest inhibitory effects on DNA transcription mediated by single-subunit T7 RNA polymerase or multi-subunit human RNA polymerase II in vitro and in human cells. 5-HmC displayed relatively milder blocking effects on transcription, and no mutant transcript could be detectable for 5-HmC in vitro or in cells. The lack of considerable mutagenic effects of the oxidized 5-mC derivatives on transcription was in agreement with their functions in epigenetic regulation. The modest blocking effects on transcription suggested that 5-FoC and 5-CaC may function in transcriptional regulation. These findings provided new evidence for the potential functional interplay between cytosine methylation status and transcription.


Assuntos
5-Metilcitosina/biossíntese , Proteínas de Ligação a DNA/metabolismo , Oxirredução , Transcrição Gênica , Animais , Linhagem Celular , Metilação de DNA , Humanos , Técnicas In Vitro
20.
J Am Soc Mass Spectrom ; 25(10): 1763-70, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25078157

RESUMO

ß-D-glucosyl-5-hydroxymethyluracil (base J) is a hyper-modified nucleobase found in the nuclear DNA of kinetoplastid parasites. With replacement of a fraction of thymine in DNA, J is localized primarily in telomeric regions of all organisms carrying this modified base. The biosynthesis of J occurs in two putative steps: first, a specific thymine in DNA is recognized and converted into 5-hydroxymethyluracil (5-HmU) by J-binding proteins (JBP1 and JBP2); a glucosyl transferase (GT) subsequently glucosylates the 5-HmU to yield J. Although several recent studies revealed the roles of internal J in regulating transcription in kinetoplastids, functions of telomeric J and proteins involved in J synthesis remain elusive. Assessing the functions of base J and understanding fully its biosynthesis necessitate the measurement of its level in cells and organisms. In this study, we reported a reversed-phase HPLC coupled with tandem mass spectrometry (LC-MS/MS) method, together with the use of a surrogate internal standard (ß-D-glucosyl-5-hydroxymethyl-2'-deoxycytidine, 5-gHmdC), for the accurate detection of ß-D-glucosyl-5-hydroxymethyl-2'-deoxyuridine (dJ) in Trypanosoma brucei DNA. For comparison, we also measured the level of the precursor for dJ synthesis [i.e. 5-hydroxymethyl-2'-deoxyuridine (5-HmdU)]. We found that base J was not detectable in the JBP-null cells whereas it replaced approximately 0.5% thymine in wild-type cells, which was accompanied with a markedly decreased level of 5-HmdU in JBP1/JBP2-null strain relative to the wild-type strain. These results provided direct evidence supporting that JBP proteins play an important role in oxidizing thymidine to form 5-HmdU, which facilitated the generation of dJ. This is the first report about the application of LC-MS/MS for the quantification of base J. The analytical method built a solid foundation for dissecting the molecular mechanisms of J biosynthesis and assessing the biological functions of base J in the future.ᅟ


Assuntos
DNA de Protozoário/química , Glucosídeos/análise , Espectrometria de Massas em Tandem/métodos , Trypanosoma brucei brucei/química , Uracila/análogos & derivados , Cromatografia Líquida/métodos , Glucosídeos/química , Uracila/análise , Uracila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...