Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(12): 5313-5320, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38567374

RESUMO

Solution-processable semiconductors with antiferromagnetic (AFM) order are attractive for future spintronics and information storage technology. Halide perovskites containing magnetic ions have emerged as multifunctional materials, demonstrating a cross-link between structural, optical, electrical, and magnetic properties. However, stable optoelectronic halide perovskites that are antiferromagnetic remain sparse, and the critical design rules to optimize magnetic coupling still must be developed. Here, we combine the complementary magnetometry and electron-spin-resonance experiments, together with first-principles calculations to study the antiferromagnetic coupling in stable Cs2(Ag:Na)FeCl6 bulk semiconductor alloys grown by the hydrothermal method. We show the importance of nonmagnetic monovalence ions at the BI site (Na/Ag) in facilitating the superexchange interaction via orbital hybridization, offering the tunability of the Curie-Weiss parameters between -27 and -210 K, with a potential to promote magnetic frustration via alloying the nonmagnetic BI site (Ag:Na ratio). Combining our experimental evidence with first-principles calculations, we draw a cohesive picture of the material design for B-site-ordered antiferromagnetic halide double perovskites.

2.
Adv Sci (Weinh) ; 11(4): e2306391, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38044299

RESUMO

Reversible optical property changes in lead-free perovskites have recently received great interest due to their potential applications in smart windows, sensors, data encryption, and various on-demand devices. However, it is challenging to achieve remarkable color changes in their thin films. Here, methylamine gas (CH3 NH2 , MA0 ) induced switchable optical bleaching of bismuth (Bi)-based perovskite films is demonstrated for the first time. By exposure to an MA0 atmosphere, the color of Cs2 AgBiBr6 (CABB) films changes from yellow to transparent, and the color of Cs3 Bi2 I9 (CBI) films changes from dark red to transparent. More interestingly, the underlying reason is found to be the interactions between MA0 and Bi3+ with the formation of an amorphous liquefied transparent intermediate phase, which is different from that of lead-based perovskite systems. Moreover, the generality of this approach is demonstrated with other amine gases, including ethylamine (C2 H5 NH2 , EA0 ) and butylamine (CH3 (CH2 )3 NH2 , BA0 ), and another compound, Cs3 Sb2 I9 , by observing a similar reversible optical bleaching phenomenon. The potential for the application of CABB and CBI films in switchable smart windows is investigated. This study provides valuable insights into the interactions between amine gases and lead-free perovskites, opening up new possibilities for high-efficiency optoelectronic and stimuli-responsive applications of these emerging Bi-based materials.

3.
J Phys Chem C Nanomater Interfaces ; 127(4): 1908-1916, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36761233

RESUMO

Phonon-phonon and electron/exciton-phonon coupling play a vitally important role in thermal, electronic, as well as optical properties of metal halide perovskites. In this work, we evaluate phonon anharmonicity and coupling between electronic and vibrational excitations in novel double perovskite Cs2NaFeCl6 single crystals. By employing comprehensive Raman measurements combined with first-principles theoretical calculations, we identify four Raman-active vibrational modes. Polarization properties of these modes imply Fm3̅m symmetry of the lattice, indicative for on average an ordered distribution of Fe and Na atoms in the lattice. We further show that temperature dependence of the Raman modes, such as changes in the phonon line width and their energies, suggests high phonon anharmonicity, typical for double perovskite materials. Resonant multiphonon Raman scattering reveals the presence of high-lying band states that mediate strong electron-phonon coupling and give rise to intense nA 1g overtones up to the fifth order. Strong electron-phonon coupling in Cs2NaFeCl6 is also concluded based on the Urbach tail analysis of the absorption coefficient and the calculated Fröhlich coupling constant. Our results, therefore, suggest significant impacts of phonon-phonon and electron-phonon interactions on electronic properties of Cs2NaFeCl6, important for potential applications of this novel material.

4.
Sci Adv ; 6(45)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33158858

RESUMO

Spintronics holds great potential for next-generation high-speed and low-power consumption information technology. Recently, lead halide perovskites (LHPs), which have gained great success in optoelectronics, also show interesting magnetic properties. However, the spin-related properties in LHPs originate from the spin-orbit coupling of Pb, limiting further development of these materials in spintronics. Here, we demonstrate a new generation of halide perovskites, by alloying magnetic elements into optoelectronic double perovskites, which provide rich chemical and structural diversities to host different magnetic elements. In our iron-alloyed double perovskite, Cs2Ag(Bi:Fe)Br6, Fe3+ replaces Bi3+ and forms FeBr6 clusters that homogenously distribute throughout the double perovskite crystals. We observe a strong temperature-dependent magnetic response at temperatures below 30 K, which is tentatively attributed to a weak ferromagnetic or antiferromagnetic response from localized regions. We anticipate that this work will stimulate future efforts in exploring this simple yet efficient approach to develop new spintronic materials based on lead-free double perovskites.

5.
Nat Commun ; 11(1): 4736, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958808

RESUMO

Black phase CsPbI3 is attractive for optoelectronic devices, while usually it has a high formation energy and requires an annealing temperature of above 300 °C. The formation energy can be significantly reduced by adding HI in the precursor. However, the resulting films are not suitable for light-emitting applications due to the high trap densities and low photoluminescence quantum efficiencies, and the low temperature formation mechanism is not well understood yet. Here, we demonstrate a general approach for deposition of γ-CsPbI3 films at 100 °C with high photoluminescence quantum efficiencies by adding organic ammonium cations, and the resulting light-emitting diode exhibits an external quantum efficiency of 10.4% with suppressed efficiency roll-off. We reveal that the low-temperature crystallization process is due to the formation of low-dimensional intermediate states, and followed by interionic exchange. This work provides perspectives to tune phase transition pathway at low temperature for CsPbI3 device applications.

6.
ACS Appl Mater Interfaces ; 12(22): 24965-24970, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32394700

RESUMO

Quasi-two-dimensional (Q-2D) perovskites featured with multidimensional quantum wells (QWs) have been the main candidates for optoelectronic applications. However, excessive low-dimensional perovskites are unfavorable to the device efficiency due to the phonon-exciton interaction and the inclusion of insulating large organic cations. Herein, the formation of low-dimensional QWs is suppressed by removing the organic cation 1-naphthylmethylamine iodide (NMAI) through ultrahigh vacuum (UHV) annealing. Perovskite light-emitting diode (PLED) devices based on films annealed with optimized UHV conditions show a higher external quantum efficiency (EQE) of 13.0% and wall-plug efficiency of 11.1% compared to otherwise identical devices with films annealed in a glovebox.

7.
Angew Chem Int Ed Engl ; 59(35): 15191-15194, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32412132

RESUMO

Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2 AgBiBr6 , shows attractive optical and electronic features, making it promising for high-efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal-engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2 AgBiBr6 under ambient conditions. The band-gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first-principles calculations indicate that enhanced Ag-Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band-gap narrowing effect. This work provides new insights for achieving lead-free double perovskites with suitable band gaps for optoelectronic applications.

8.
Chem Sci ; 12(5): 1730-1735, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34163932

RESUMO

Although lead-free halide double perovskites are considered as promising alternatives to lead halide perovskites for optoelectronic applications, state-of-the-art double perovskites are limited by their large bandgap. The doping/alloying strategy, key to bandgap engineering in traditional semiconductors, has also been employed to tune the bandgap of halide double perovskites. However, this strategy has yet to generate new double perovskites with suitable bandgaps for practical applications, partially due to the lack of fundamental understanding of how the doping/alloying affects the atomic-level structure. Here, we take the benchmark double perovskite Cs2AgInCl6 as an example to reveal the atomic-level structure of double perovskite alloys (DPAs) Cs2AgIn1-x Fe x Cl6 (x = 0-1) by employing solid-state nuclear magnetic resonance (ssNMR). The presence of paramagnetic alloying ions (e.g. Fe3+ in this case) in double perovskites makes it possible to investigate the nuclear relaxation times, providing a straightforward approach to understand the distribution of paramagnetic alloying ions. Our results indicate that paramagnetic Fe3+ replaces diamagnetic In3+ in the Cs2AgInCl6 lattice with the formation of [FeCl6]3-·[AgCl6]5- domains, which show different sizes and distribution modes in different alloying ratios. This work provides new insights into the atomic-level structure of bandgap engineered DPAs, which is of critical significance in developing efficient optoelectronic/spintronic devices.

9.
Adv Mater ; 30(22): e1707143, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29682798

RESUMO

Effective passivation and stabilization of both the inside and interface of a perovskite layer are crucial for perovskite solar cells (PSCs), in terms of efficiency, reproducibility, and stability. Here, the first formamidinium lead iodide (δ-FAPbI3 ) polymorph passivated and stabilized MAPbI3 PSCs are reported. This novel MAPbI3 /δ-FAPbI3 structure is realized via treating a mixed organic cation MA x FA1-x PbI3 perovskite film with methylamine (MA) gas. In addition to the morphology healing, MA gas can also induce the formation of δ-FAPbI3 phase within the perovskite film. The in situ formed 1D δ-FAPbI3 polymorph behaves like an organic scaffold that can passivate the trap state, tunnel contact, and restrict organic-cation diffusion. As a result, the device efficiency is easily boosted to 21%. Furthermore, the stability of the MAPbI3 /δ-FAPbI3 film is also obviously improved. This δ-FAPbI3 phase passivation strategy opens up a new direction of perovskite structure modification for further improving stability without sacrificing efficiency.

10.
ACS Appl Mater Interfaces ; 8(45): 31413-31418, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27797470

RESUMO

Recently, perovskite solar cells with high photovoltaic performance based on methylammonium lead halide have attracted great interest due to the superior physical properties of the perovskite optical absorption layer. Here, we investigate the interface carrier transport properties of CH3NH3PbI3 film by applying the reported treatment with methylamine gas, to reveal the possible mechanism of high performance perovskite-sensitized solar cell results. It is found that the crystal structure and surface morphology are effectively improved by the room-temperature repair of methylamine atmosphere. The preferred 110 orientation results in a slightly larger band gap, which may contribute to the better energy level matching and carrier transport. Further investigations on relaxation time and electron mobility confirm the significantly enhanced carrier diffusion length, revealing the important role of optimized crystallization on charge transport properties, which may be helpful to seek high-powered perovskite solar cells by optimizing the perovskite synthetic process.

11.
Angew Chem Int Ed Engl ; 55(47): 14723-14727, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27766739

RESUMO

Methylamine-induced thin-film transformation at room-temperature is discovered, where a porous, rough, polycrystalline NH4 PbI3 non-perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH3 NH3 PbI3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH4 PbI3 -to-CH3 NH3 PbI3 transformation process. The chemical origins of this transformation are studied at various length scales.

12.
Chem Commun (Camb) ; 52(19): 3828-31, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26867948

RESUMO

High-quality formamidinium lead iodide (FAPbI3) perovskite thin films are fabricated via organic cation exchange. With ammonia lead iodide (NH4PbI3) as the starting material, the NH4(+) in NH4PbI3 could be gradually substituted by FA(+) in formamidine acetate (FA-Ac) and simultaneously transformed to the pure phase α-FAPbI3 at elevated temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...