Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168724, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38007135

RESUMO

The vertical sequestration of dissolved organic matter (DOM) by iron minerals along the soil profile is assumed to be central to the long-term storage of the soil organic matter (SOM) pool. However, there is limited information available about how the interaction between DOM and natural iron-bearing minerals shape mineral SOM associations quantitatively and qualitatively in forest subsoils. Here, we systematically investigated the influences of forest organic layer-pyrolyzed biochar-derived DOM (BDOM) and leached DOM (LDOM) on quantity, molecular composition, and diversity of deposition layer-derived iron minerals-associated OM by using Fourier transform ion cyclotron resonance mass spectrometry and other complementary spectroscopy. Results indicated natural iron minerals (FeOx1 and FeOx2) had a greater capacity for sorbing LDOM with higher aromaticity and molecular weight than those of BDOM, and the higher proportion of goethite and short-order-range phase in natural iron minerals was closely related to the increased OM adsorption capacity. We also observed the preferential sorption of oxygen/nitrogen-rich polycyclic aromatic compounds and carboxylic-containing compounds in LDOM and concurrent the potential release of lignin-like/aromatics compounds and carboxyl/nitrogen-less aliphatic compounds from native OM coprecipitates into the solution. However, unsaturated and oxidized phenolic compounds in BDOM had a stronger affinity for FeOx through hydrophobic partitioning and specific polar interactions, and concomitantly the partial release of nitrogen-free aliphatic and other carboxyl-rich compounds. More nitrogen structures in aromatic-containing compounds can improve the saturation level and polarity of BDOM. Compared with BDOM, LDOM exerted a stronger control over the exchange of native OM from subsoil natural iron-bearing minerals and substantially enhanced the molecular diversity of the reconstituted mineral-associated OM during the adsorptive fractionation. Overall, these findings suggest the compositional evolution of DOM profoundly shapes SOM formation and persistence in forest subsoils, which is the key to understanding DOM cycling and contaminant fate during its passage through the soil.

2.
Environ Sci Technol ; 58(1): 410-420, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38154084

RESUMO

SiO2 nanoparticles (SiO2NPs) are most widely available and coexisting with DOM at the mineral-water interface; however, the role of SiO2NPs in DOM fractionation and the underlying mechanisms have not been fully understood. Using Fourier transform ion cyclotron resonance mass spectrometry, combined with Fourier transform infrared spectroscopy and X-ray adsorption fine structure spectroscopy, was employed to investigate the adsorptive fractionation of litter layer-derived DOM on goethite coexisting with SiO2NPs under different pH conditions. Results indicated that the inhibitory effect of the coexisting SiO2NPs on OM sorbed by goethite was waning as environmental pH increased due to the reduced steric interactions and the concurrent elevated hydrogen bonding/hydrophobic partitioning interactions on the goethite surface. We observed the coexisting SiO2NPs inhibited the adsorption of high carboxylic-containing condensed aromatic/aromatics compounds on goethite under different pH conditions while improving the adsorption of highly unsaturated aliphatic/phenolic and carbohydrate-like compounds in an alkaline and/or circumneutral environment. More nitrogen-containing structures may favor the adsorption of phenolic and nonaromatic compounds to goethite by counteracting the negative effect of SiO2NPs. These findings suggest that DOM sequestration may be significantly regulated by the coexisting SiO2NPs at the mineral-water interface, which may further influence the carbon-nitrogen cycling and contaminant fate in natural environments.


Assuntos
Matéria Orgânica Dissolvida , Dióxido de Silício , Adsorção , Minerais/química , Compostos Orgânicos , Fenóis , Água , Nitrogênio
3.
Ecotoxicol Environ Saf ; 258: 114959, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121079

RESUMO

The application of organic fertilizers caused large amounts of dissolved organic matter (DOM) entering the soil environment and influencing the behaviors and fates of heavy metals. Here, we investigated the molecular weight-dependent (high molecular weight [HMW], 1 kDa-0.7 µm; low molecular weight [LMW], <1 kDa) compositions and lead (Pb) binding behaviors of DOM derived from sheep manure-based (SMOF) and shrimp peptide-based organic fertilizers (SPOF) using chromophoric and fluorescent spectroscopy, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and two-dimensional correlation spectroscopy (2D-COS). Results showed that SMOF released more DOM with higher aromaticity and hydrophobicity, containing more fluvic-like components, carboxylic-rich alicyclic molecules (CRAMs) and lignin phenolic compounds compared to SPOF-DOM with more microbially-transformed heteroatom-containing compounds (CHON, CHONS and CHOS). Furthermore, there was more aromatic compounds with ample carboxyl and hydroxyl groups in HMW-DOM but abundant protein-like components and heteroatom-containing compounds (CHONS and CHOS) in LMW-DOM. SMOF-DOM exhibited more obvious MW-dependent heterogeneity in molecular components compared to SPOF-DOM with higher molecular diversity. Moreover, 2D-COS indicated phenol and carboxyl groups in SMOF-DOM and polysaccharides in SPOF-DOM exhibited superior binding affinities for Pb. Pb binding to HMW-DOM derived from SMOF first occurred in the phenolic groups in fulvic-like substances, while polysaccharides in LMW-DOM first participated in the binding of Pb. In contrast, irrespective of MWs, polysaccharides and humic-like substances with aromatic (CC) groups in SPOF-DOM displayed a faster response to Pb. Furthermore, the polysaccharides which preferentially participated in the binding of Pb to SPOF-DOM and SMOF-derived LMW-DOM may pose a higher risk of Pb in the environment. These results were helpful to understand the effects of sources and size-dependent compositions of DOM on the associated risks of heavy metals in the environments.


Assuntos
Matéria Orgânica Dissolvida , Metais Pesados , Animais , Ovinos , Fertilizantes/análise , Chumbo , Substâncias Húmicas/análise , Metais Pesados/química , Espectrometria de Fluorescência/métodos
4.
Huan Jing Ke Xue ; 42(9): 4538-4547, 2021 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-34414754

RESUMO

Rational application of nitrogen is an important strategy for increasing yield while reducing environmental pollution due to nitrogen. Pot experiments were conducted to study the effects of different application times on maize yield and soil N2O emission under conditions of equal nitrogen content, and to explore the relationship between the abundance of nitrogen conversion functional genes and N2O emission. Four treatments were used, namely a control (CK, no urea), one-time application (S1, one application of 0.5 g·kg-1 urea+nitrification inhibitor), two separate applications ï¼»S2, two applications of 0.5 g·kg-1 urea (40% and 60% respectively)ï¼½ and three separate applications (S3, 0.5 g·kg-1 urea was divided into three different applications: 20%, 40% and 40% respectively). The results showed that: ① nitrogen application promoted soil acidification, and the degree of soil acidification varied significantly with different application times. More applications of nitrogen led to stronger soil acidification. Nitrogen application significantly increased the ear yield and stem biomass of fresh table maize, but different nitrogen application times may alter soil pH, leading to differences in the degree of nitrogen uptake and utilization in plants. While the S3 treatment significantly reduced soil pH, it also reduced the cumulative nitrogen uptake and utilization in the plants, resulting in a high cumulative N2O emission. Compared with the S3 treatment, the yield was 40.21% and 42.55% higher in the S1 and S2 treatments, and the cumulative N2O emission decreased by 79.4% and 20.9%, respectively. ② N2O emission was positively correlated with the abundance of AOB and nirK genes, which were the main contributors to N2O emission. S1 significantly decreased the abundance of AOB and nirK genes and N2O emissions, while S2 and S3 significantly increased the abundance of nirK and nirS genes and decreased the abundance of nosZ genes after fertilization, promoting N2O emissions. Nitrogen application times affect the functional genes of the nitrogen transformation process, and thus affect N2O emissions. In conclusion, a one-time application of urea combined with DCD only guarantees high maize yield and improves the efficient use of nitrogen, but also reduces greenhouse gas emissions. Thus, it is the recommended nitrogen fertilization mode for the cultivation of fresh corn in Hainan.


Assuntos
Fertilizantes , Zea mays , Agricultura , Fertilizantes/análise , Nitrificação , Nitrogênio , Óxido Nitroso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...