Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(12): 3500-3503, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875655

RESUMO

Neural network (NN)-based equalizers have been widely applied for dealing with nonlinear impairments in intensity-modulated direct detection (IM/DD) systems due to their excellent performance. However, the computational complexity (CC) is a major concern that limits the real-time application of NN-based receivers. In this Letter, we propose, to our knowledge, a novel weight-adaptive joint mixed-precision quantization and pruning approach to reduce the CC of NN-based equalizers, where only integer arithmetic is taken into account instead of floating-point operations. The NN connections are either directly cutoff or represented by a proper number of quantization bits by weight partitioning, leading to a hybrid compressed sparse network that computes much faster and consumes less hardware resources. The proposed approach is verified in a 50-Gb/s 25-km pulse amplitude modulation (PAM)-4 IM/DD link using a directly modulated laser (DML) in the C-band. Compared with the traditional fully connected NN-based equalizer operated with standard floating-point arithmetic, about 80% memory can be saved at a minimum network size without degrading the system performance. Quantization is also shown to be more suitable to over-parameterized NN-based equalizers compared with NNs selected at a minimum size.

2.
Opt Lett ; 49(4): 981-984, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359241

RESUMO

Self-homodyne coherent transmission has recently received extensive investigation as a coherent lite candidate for high-speed short-reach optical networks. In this Letter, we propose a weakly coupled mode-division-multiplexing (MDM) self-homodyne coherent scheme using a multiple-ring-core few-mode fiber, in which one of the modes transmits a self-homodyne local oscillator (LO) and the rest are utilized for carrying signals. Multiple rings of index perturbations in the fiber core are applied to achieve low modal crosstalk, allowing the signals and the remote LO to be transmitted independently. We experimentally demonstrate a 7.2-Tb/s (5.64-Tb/s net rate) self-homodyne coherent transmission with an 800-Gb/s data rate for each of the nine information-bearing modes formatted in 80-GBaud probabilistic constellation-shaped 64-quadrature-amplitude modulation. To the best of our knowledge, this is the first experimental demonstration of an MDM self-homodyne coherent transmission with up to 10 spatial modes. The proposed scheme may pave the way for future high-capacity data center interconnections.

3.
Opt Express ; 32(2): 1715-1727, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297717

RESUMO

Bandwidth limitation in optoelectrical components and the chromatic dispersion-induced power fading phenomenon cause severe inter-symbol interference (ISI) in high-speed intensity modulation and direct detection (IM-DD) optical interconnects. While the equalizer implemented in the receiver's digital signal processing procedure can mitigate ISI, it also inevitably enhances the noise located in the decayed frequency region, known as equalization-enhanced colored noise (EECN). Additionally, the nonlinear impairments of the modulator and photodetector also deteriorate the performance of the IM-DD system, especially for high-order modulation formats. In this work, we propose a gradient-descent noise whitening (GD-NW) algorithm to address EECN and extend it by introducing nonlinear kernels to simultaneously mitigate EECN and nonlinear impairments. The proposed algorithms are compared with conventional counterparts in terms of the achievable baud rate and the receiver optical power sensitivity. As a proof-of-concept experiment, we validate the principles of the proposed algorithms by successfully transmitting 360-GBd on-off-keying (OOK) and 180-GBd 4-level pulse-amplitude-modulation (PAM-4) signals in the back-to-back case under a 62-GHz brick-wall bandwidth limitation. 280-GBd OOK and 150-GBd PAM-4 transmissions are also demonstrated over 1-km standard single-mode fiber with a bit error rate below 7% hard-decision forward error correction aided by the proposed approach.

4.
Opt Express ; 31(25): 41546-41555, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087550

RESUMO

We experimentally demonstrate a 214.7 Tbit/s generalized mutual information (GMI) estimated throughput by ultra-wideband wavelength division multiplexing (WDM) transmission in standard single-mode fiber (SSMF). With 50-GHz grid, 396 transmission channels are used to deliver 49 GBaud probabilistically constellation-shaped (PCS) 256 quadrature amplitude modulation (QAM) and PCS-64QAM signals. Silicon photonic integrated transceiver is employed to complete electro-optic and optic-electro conversion of the modulated signals. S, C, and L-band rare-earth-doped amplifiers enable the 19.8 THz bandwidth WDM transmission without the assistance of distributed Raman amplification. The measured data rate shows great potential for Silicon photonic devices deployed in ultra-wideband WDM transmission.

5.
Opt Lett ; 48(19): 4957-4960, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773359

RESUMO

Direct detection system is expected to possess the phase and polarization diversity in order to achieve high spectral efficiency and fiber impairment compensation such as chromatic dispersion and polarization rotation. In this Letter, we theoretically extend the concept of the proposed Jones-space field recovery (JSFR) to include a dynamic polarization rotation matrix and experimentally demonstrate the rapid polarization state tracking ability of the JSFR receiver based on a 3 × 3 optical coupler. Under a rotation of the state of polarization at a rate of 1 Mrad/s, we successfully transmit 59-GBd dual-polarization 16-ary quadrature-amplitude-modulation signals over an 80-km standard single-mode fiber based on a decision-directed least mean square (DD-LMS) or a recursive least square (DD-RLS), with a bit-error rate below the 14% hard-decision forward error correction threshold of 1 × 10-2. The experimental results indicate that the legacy polarization tracking algorithms designed for coherent optical communication are also applicable for this direct detection scheme. To our best knowledge, this work demonstrates the first polarization rotation-tolerant direct detection system with phase and polarization diversity, providing a low-cost and high-speed solution for short-reach communications.

6.
Opt Express ; 30(7): 11767-11788, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473113

RESUMO

Data center interconnects require cost-effective photonic integrated optical transceivers to meet the ever-increasing capacity demands. Compared with a coherent transmission system, a complex-valued double-sideband (CV-DSB) direct detection (DD) system can minimize the cost of the photonic circuit, since it replaces two stable narrow-linewidth lasers with only a low-cost un-cooled laser in the transmitter while maintaining a similar spectral efficiency. In the carrier-assisted DD system, the carrier power accounts for a large proportion of the total optical signal power. Reducing the carrier to signal power ratio (CSPR) can improve the information-bearing signal power and thus the achievable system performance. To date, the minimum required CSPR is ∼7 dB for all the reported CV-DSB DD systems having electrical bandwidths of approximately half of baud rates. In this paper, we propose a deep-learning-enabled DD (DLEDD) scheme to recover the full optical field of the transmitted signal at a low CSPR of 2 dB in experiment. Our proposal is based on a dispersion-diversity receiver with an electrical bandwidth of ∼61.0% baud rate and a high tolerance to laser wavelength drift. A deep convolutional neural network enables accurate signal recovery in the presence of a strong signal-signal beat interference. Compared with the conventional method, the proposed DLEDD scheme can reduce the optimum CSPR by ∼8 dB, leading to a significant signal-to-noise ratio improvement of ∼5.8 dB according to simulation results. We experimentally demonstrate the optical field reconstruction for a 28-GBaud 16-ary quadrature amplitude modulation signal after 80-km single-mode fiber transmission based on the proposed DLEDD scheme with a 2-dB optimum CSPR. The results show that the proposed DLEDD scheme could offer a high-performance solution for cost-sensitive applications such as data center interconnects, metro networks, and mobile fronthaul systems.

7.
Opt Express ; 29(21): 33502-33511, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809161

RESUMO

For high-capacity and short-reach applications, carrier-assisted differential detection (CADD) has been proposed, in which the optical field of a complex-valued double sideband (DSB) signal is reconstructed without using a sharp-edge optical bandpass filter or local oscillator laser. The CADD receiver features a transfer function with periodical nulls in the frequency domain, while the signal-signal beat interference (SSBI) is severely amplified around the frequency nulls of the transfer function. Since the null magnitude at the zero frequency is inevitable, a guard band is required between the carrier and the signal, leading to a higher receiver bandwidth and implementation cost. To reduce the needed guard band, we propose a parallel dual delay-based CADD (PDD-CADD), in which an additional delay is placed parallel to the original delay in the conventional CADD. By this means, the modified transfer function has a sharper roll-off edge around the zero frequency. Consequently, the requirement on the guard band can be relaxed, which maximizes the bandwidth utilization of the system. The parallel delay is first optimized through numerical simulation. We then perform a proof-of-concept experiment to transmit a 100-Gb/s orthogonal frequency division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal over an 80-km single-mode fiber (SMF). After the fiber transmission, the proposed PDD-CADD can reduce the required guard band from 3 to about 1.2 GHz compared with the single delay-based conventional CADD. To our best knowledge, for the direct detection of a single polarization complex-valued DSB signal without using a sharp-roll-off optical filter, we achieve a record electrical spectral efficiency of 5.9 b/s/Hz.

8.
Opt Express ; 28(24): 35946-35959, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379700

RESUMO

Direct detection capable of optical field recovery not only enables high-order modulation for high spectral efficiency (SE) but also extends the transmission reach by digital compensation of linear channel impairments such as chromatic dispersion. Recently, to bridge the gap between direct detection and coherent detection, carrier assisted differential detection (CADD) has been proposed for the reception of complex-valued double-sideband signals. In this paper, we extend the concept CADD to a general selection of the transfer functions, beyond the originally-proposed delay interferometer. To validate the proposed CADD approach, we utilize an optical filter based on silicon photonics microring resonator (MRR) as one realization of the generalized transfer functions. With the MRR based optical filter, both the required carrier-to-signal power ratio (CSPR) and the optical signal-to-noise ratio (OSNR) sensitivity are drastically improved over the conventional CADD due to the significantly suppressed signal-signal beating interference (SSBI). In addition, the proposed CADD is resilient to the wavelength offset up to several GHz between the transmitter laser and the center wavelength of the MRR based optical filter. With the proposed transfer function, CADD provides a novel approach for achieving high-SE transmission with superior receiver sensitivity and could be potentially useful for inter-/intra-datacenter or mobile front haul applications.

9.
Opt Express ; 28(15): 22882-22890, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752541

RESUMO

Silicon photonics coherent transceivers have integrated all the necessary optics except the lasers. The laser source has become a major obstacle to further reduce the cost, footprint, power consumption of the coherent transceivers for short-reach optical interconnects. One solution is to utilize remotely delivered local oscillator (LO) from the transmitter, which has the benefits of relaxing the requirements of wavelength stability and laser linewidth and simplifying the digital signal processing (DSP) of carrier/phase recovery. However, a sophisticated adaptive polarization controller (APC) driven by a control loop in the electrical domain with a complicated algorithm is required to dynamically track and compensate for the polarization wandering of the received LO. In this paper, we propose a hybrid single-polarization coherent receiver and Stokes vector receiver (SVR) for polarization-diversity coherent detection without a need of optical polarization control for the remotely delivered LO. With such a scheme, we successfully received a 400-Gb/s dual-polarization constellation-shaped 64-QAM signal over 80-km fibers.

10.
Light Sci Appl ; 9: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047627

RESUMO

To overcome power fading induced by chromatic dispersion in optical fiber communications, optical field recovery is a promising solution for direct detection short-reach applications, such as fast-evolving data center interconnects (DCIs). To date, various direct detection schemes capable of optical field recovery have been proposed, including Kramers-Kronig (KK) and signal-signal beat interference (SSBI) iterative cancellation (IC) receivers. However, they are all restricted to the single sideband (SSB) modulation format, thus conspicuously losing half of the electrical spectral efficiency (SE) compared with double sideband (DSB) modulation. Additionally, SSB suffers from the noise folding issue, requiring a precise optical filter that complicates the receiver design. As such, it is highly desirable to investigate the field recovery of DSB signals via direct detection. In this paper, for the first time, we propose a novel receiver scheme called carrier-assisted differential detection (CADD) to realize optical field recovery of complex-valued DSB signals via direct detection. First, CADD doubles the electrical SE compared with the KK and SSBI IC receivers by adopting DSB modulation without sacrificing receiver sensitivities. Furthermore, by using direct detection without needing a precise receiver optical filter, CADD can employ cost-effective uncooled lasers as opposed to expensive temperature-controlled lasers in coherent systems. Our proposed receiver architecture opens a new class of direct detection schemes that are suitable for photonic integration analogous to homodyne receivers in coherent detection.

11.
Opt Lett ; 44(7): 1785-1788, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933147

RESUMO

The Kramers-Kronig (KK) receiver has recently attracted significant attention due to its capability of field recovery with direct detection. Under minimum phase condition, the KK receiver may use either single- or multi-carrier modulation formats. In this Letter, we investigate the appropriate modulation formats for both KK and signal-signal beat interference (SSBI) iterative cancellation (IC) receivers. It is shown that for the KK receiver, the single-carrier modulation format is superior to orthogonal frequency division multiplexing (OFDM), because the multi-carrier nature of OFDM signals increases the peak-to-average power ratio, which causes a violation of minimum phase condition. For the IC receiver, SSBI cancellation is more effective when the OFDM modulation format is adopted; thus, OFDM is the better fit for IC receivers than single carrier.

12.
Opt Lett ; 44(8): 2065-2068, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985812

RESUMO

Direct detection attracts much attention for its simplicity compared with coherent detection. In this Letter, we propose for the first time, to the best of our knowledge, a high-dimensional Stokes vector direct detection (HD-SVDD) receiver for mode-division multiplexing transmission in few-mode fibers where the coupled modes can be recovered without resorting to coherent detection. To the best of our knowledge, the first high-dimensional Stokes vector reception based on the proposed HD-SVDD receiver has been successfully demonstrated with a dual-spatial and dual-polarization mode at 60 Gb/s over a 200 m two-mode fiber.

13.
Opt Express ; 24(12): 12941-8, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410313

RESUMO

High speed data modulation based on bandwidth limited devices has been considered as a cost-effective way to upgrade 10G-EPON to the next generation 100G-EPON. In this paper, we experimentally demonstrate the modulation, fiber transmission and reception of 25-Gb/s signal based on directly modulated laser and photo-detector both operating at 10 GHz. Instead of digital signal processing, the chirp management, dispersion compensation and frequency equalization in our scheme are realized in optical domain using a single delay interferometer. Three popular formats are investigated, including NRZ-OOK, PAM-4 and duobinary. According to the experimental results, the NRZ-OOK format shows its superiority in both launch power and receiver sensitivity, which provides a cost-effective solution for the construction of 100-Gb/s TWDM-PON.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...